https://nanti.jisuanke.com/t/29122
题意:给你一颗最小生成树,然后再给你些许散边,构成一张图。散边保证互不成环(也就意味着散边的数量不超过n-1),当然散边加上生成树必定生成许多环。问,最小化当且仅当删生成树的一条边并再删几条散边的数量使图分离。
首先使一棵树,然后上面加了许多边成了一张图。先考虑删除一条生成树上的边,接下来相当于要把两个团其他有关系的散边全部断开。
可以考虑每一个节点子树里的所有关系数量,以及这个节点与其他点的关系数量。维护一个子树内的其他关系和与内关系和做个差就是代价。
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long int LL;
const int maxn = 4e4 + 10;
int T,n,m;
int st[maxn],sz;
int ed[maxn];
vector<int>to[maxn];
int e[maxn][2];
int ans ;
int sum[maxn];
void dfs(int x,int pre){
st[x] = ++sz;
for(int i=0;i<to[x].size();i++){
if(to[x][i] == pre) continue;
dfs(to[x][i], x);
}
ed[x] = sz;
e[x][1] += to[x].size();
if(pre != 0) e[x][1] --;
}
void dfs2(int x,int pre){
sum[x] = e[x][0]-e[x][1]-e[x][1];
for(int i=0;i<to[x].size();i++){
int nt = to[x][i];
if(nt == pre) continue;
dfs2(nt, x);
sum[x] = sum[x] + sum[nt];
}
if(pre!=0) ans = min(ans, sum[x]);
}
int main()
{
int cas = 0;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
memset(e, 0, sizeof e);
for(int i=1;i<=n;i++) to[i].clear();
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
to[x].push_back(y);
to[y].push_back(x);
e[x][0] ++; e[y][0] ++;
}
sz = 0;
dfs(1,0);
for(int i=n;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
e[x][0] ++;
e[y][0] ++;
if(st[x] <= st[y] && st[y] <= ed[x]) e[x][1] ++;
if(st[y] <= st[x] && st[x] <= ed[y]) e[y][1] ++;
}
ans = m;
dfs2(1,0);
printf("Case #%d: %d\n",++cas,ans);
}
return 0;
}