ACM-ICPC 2015 Shenyang Preliminary Contest C Minimum Cut【树形DP】

https://nanti.jisuanke.com/t/29122

题意:给你一颗最小生成树,然后再给你些许散边,构成一张图。散边保证互不成环(也就意味着散边的数量不超过n-1),当然散边加上生成树必定生成许多环。问,最小化当且仅当删生成树的一条边并再删几条散边的数量使图分离。

首先使一棵树,然后上面加了许多边成了一张图。先考虑删除一条生成树上的边,接下来相当于要把两个团其他有关系的散边全部断开。

可以考虑每一个节点子树里的所有关系数量,以及这个节点与其他点的关系数量。维护一个子树内的其他关系和与内关系和做个差就是代价。

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <vector>
using namespace std;

typedef long long int LL;
const int maxn = 4e4 + 10;
int T,n,m;
int st[maxn],sz;
int ed[maxn];
vector<int>to[maxn];
int e[maxn][2];
int ans ;
int sum[maxn];
void dfs(int x,int pre){
    st[x] = ++sz;
    for(int i=0;i<to[x].size();i++){
        if(to[x][i] == pre) continue;
        dfs(to[x][i], x);
    }
    ed[x] = sz;
    e[x][1] += to[x].size();
    if(pre != 0) e[x][1] --;
}

void dfs2(int x,int pre){
    sum[x] = e[x][0]-e[x][1]-e[x][1];
    for(int i=0;i<to[x].size();i++){
        int nt = to[x][i];
        if(nt == pre) continue;
        dfs2(nt, x);
        sum[x] = sum[x] + sum[nt];
    }
    if(pre!=0) ans = min(ans, sum[x]);
}

int main()
{
    int cas = 0;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        memset(e, 0, sizeof e);
        for(int i=1;i<=n;i++) to[i].clear();
        for(int i=1;i<n;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            to[x].push_back(y);
            to[y].push_back(x);
            e[x][0] ++; e[y][0] ++;
        }
        sz = 0;
        dfs(1,0);
        for(int i=n;i<=m;i++){
            int x,y;
            scanf("%d%d",&x,&y);
            e[x][0] ++;
            e[y][0] ++;
            if(st[x] <= st[y] && st[y] <= ed[x]) e[x][1] ++;
            if(st[y] <= st[x] && st[x] <= ed[y]) e[y][1] ++;
        }
        ans = m;
        dfs2(1,0);
        printf("Case #%d: %d\n",++cas,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值