一【题目类别】
- 动态规划
二【题目难度】
- 困难
三【题目编号】
- 123.买卖股票的最佳时机 III
四【题目描述】
- 给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
- 设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
- 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
五【题目示例】
-
示例 1:
- 输入:prices = [3,3,5,0,0,3,1,4]
- 输出:6
- 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
-
示例 2:
- 输入:prices = [1,2,3,4,5]
- 输出:4
- 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
-
示例 3:
- 输入:prices = [7,6,4,3,1]
- 输出:0
- 解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
-
示例 4:
- 输入:prices = [1]
- 输出:0
六【解题思路】
- 整体利用动态规划的思路,但是本题较难,因为状态较多,一共可以分五种状态,对于任意一天:
- 没有任何操作
- 第一次买入
- 第一次卖出
- 第二次买入
- 第二次卖出
- 那么对于任意一天五种情况的动态转移方程是什么呢?需要注意,每种情况我们都要取最大值,表示此天的操作获得的最大利润:
- 没有任何操作:
- 直接沿用前一天没有任何操作的状态,其实本步也可以不在代码中展示,因为没有任何变化,但是为了思路连贯,还是放到代码中了
- 第一次买入:
- 第 i i i天买入股票,那么 d p [ i ] [ 1 ] = d p [ i − 1 ] [ 0 ] − p r i c e s [ i ] dp[i][1] = dp[i - 1][0] - prices[i] dp[i][1]=dp[i−1][0]−prices[i],表示之前没有操作,用之前的利润减去当天买入股票的价钱
- 第 i i i天没有操作,那么沿用前一天的状态,即: d p [ i ] [ 1 ] = d p [ i − 1 ] [ 1 ] dp[i][1] = dp[i-1][1] dp[i][1]=dp[i−1][1]
- 所以对于此种情况的动态转移方程为: d p [ i ] [ 1 ] = m a x ( d p [ i − 1 ] [ 1 ] , d p [ i − 1 ] [ 0 ] − p r i c e s [ i ] ) dp[i][1] = max(dp[i - 1][1],dp[i - 1][0] - prices[i]) dp[i][1]=max(dp[i−1][1],dp[i−1][0]−prices[i])
- 第一次卖出:
- 第 i i i天卖出股票,那么 d p [ i ] [ 2 ] = d p [ i − 1 ] [ 1 ] + p r i c e s [ i ] dp[i][2] = dp[i - 1][1] + prices[i] dp[i][2]=dp[i−1][1]+prices[i],表示之前买入过股票,用之前的利润加上当天卖出股票的价钱
- 第 i i i天没有操作,那么沿用前一天的状态,即: d p [ i ] [ 2 ] = d p [ i − 1 ] [ 2 ] dp[i][2] = dp[i-1][2] dp[i][2]=dp[i−1][2]
- 所以对于此种情况的动态转移方程为: d p [ i ] [ 2 ] = m a x ( d p [ i − 1 ] [ 2 ] , d p [ i − 1 ] [ 1 ] + p r i c e s [ i ] ) dp[i][2] = max(dp[i - 1][2],dp[i - 1][1] + prices[i]) dp[i][2]=max(dp[i−1][2],dp[i−1][1]+prices[i])
- 第二次买入:
- 与第一次买入同理,只是需要取第一次卖出后的最大利润与本次买入股票的利润相减
- 所以对于此种情况的动态转移方程为: d p [ i ] [ 3 ] = m a x ( d p [ i − 1 ] [ 3 ] , d p [ i − 1 ] [ 2 ] − p r i c e s [ i ] ) dp[i][3] = max(dp[i - 1][3],dp[i - 1][2] - prices[i]) dp[i][3]=max(dp[i−1][3],dp[i−1][2]−prices[i])
- 第二次卖出:
- 与第一次卖出同理,只是需要取第二次买入后的最大利润与本次卖出股票的利润相加
- 所以对于此种情况的动态转移方程为: d p [ i ] [ 4 ] = m a x ( d p [ i − 1 ] [ 4 ] , d p [ i − 1 ] [ 3 ] + p r i c e s [ i ] ) dp[i][4] = max(dp[i - 1][4],dp[i - 1][3] + prices[i]) dp[i][4]=max(dp[i−1][4],dp[i−1][3]+prices[i])
- 没有任何操作:
- 需要注意最后一次卖出股票后,可以获得最大利润,因为每次都是按照最大利润计算的
- 另外还需要注意,初始化参数时,第一次的股票也有五种情况,对于没有操作和卖出这几种状态因为获取不到利润,所以利润为0,而对于买入的状态,因为初始化没有钱,所以可以获得的最大利润就是第一支股票的负数,也就是属于欠钱的状态,再通过后面的状态转移方程获取最大利润
- 最后返回结果即可
七【题目提示】
- 1 < = p r i c e s . l e n g t h < = 1 0 5 1 <= prices.length <= 10^5 1<=prices.length<=105
- 0 < = p r i c e s [ i ] < = 1 0 5 0 <= prices[i] <= 10^5 0<=prices[i]<=105
八【时间频度】
- 时间复杂度: O ( n ) O(n) O(n),其中 n n n为数组大小
- 空间复杂度: O ( n ) O(n) O(n),其中 n n n为数组大小
九【代码实现】
- Java语言版
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][5];
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
for(int i = 1;i<prices.length;i++){
dp[i][0] = dp[i-1][0];
dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] - prices[i]);
dp[i][2] = Math.max(dp[i-1][2],dp[i-1][1] + prices[i]);
dp[i][3] = Math.max(dp[i-1][3],dp[i-1][2] - prices[i]);
dp[i][4] = Math.max(dp[i-1][4],dp[i-1][3] + prices[i]);
}
return dp[n-1][4];
}
}
- C语言版
int maxProfit(int* prices, int pricesSize)
{
int** dp = (int**)malloc(sizeof(int*)*pricesSize);
for(int i = 0;i<pricesSize;i++)
{
dp[i] = (int*)calloc(5,sizeof(int));
}
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
dp[0][3] = -prices[0];
dp[0][4] = 0;
for(int i = 1;i<pricesSize;i++)
{
dp[i][0] = dp[i-1][0];
dp[i][1] = fmax(dp[i-1][1],dp[i-1][0] - prices[i]);
dp[i][2] = fmax(dp[i-1][2],dp[i-1][1] + prices[i]);
dp[i][3] = fmax(dp[i-1][3],dp[i-1][2] - prices[i]);
dp[i][4] = fmax(dp[i-1][4],dp[i-1][3] + prices[i]);
}
return dp[pricesSize - 1][4];
}
- Python版
class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
dp = [[0] * 5 for _ in range(n)]
dp[0][0] = 0
dp[0][1] = -prices[0]
dp[0][2] = 0
dp[0][3] = -prices[0]
dp[0][4] = 0
for i in range(1,n):
dp[i][0] = dp[i-1][0]
dp[i][1] = max(dp[i - 1][1],dp[i - 1][0] - prices[i])
dp[i][2] = max(dp[i - 1][2],dp[i - 1][1] + prices[i])
dp[i][3] = max(dp[i - 1][3],dp[i - 1][2] - prices[i])
dp[i][4] = max(dp[i - 1][4],dp[i - 1][3] + prices[i])
return dp[n - 1][4]
十【提交结果】
-
Java语言版
-
C语言版
-
Python语言版