【LeetCode每日一题】——50.Pow(x, n)

一【题目类别】

  • 数学

二【题目难度】

  • 中等

三【题目编号】

  • 50.Pow(x, n)

四【题目描述】

  • 实现 p o w ( x , n ) pow(x, n) pow(x,n) ,即计算 x x x 的整数 n n n 次幂函数(即, x n x^{n} xn )。

五【题目示例】

  • 示例 1:

    • 输入:x = 2.00000, n = 10
    • 输出:1024.00000
  • 示例 2:

    • 输入:x = 2.10000, n = 3
    • 输出:9.26100
  • 示例 3:

    • 输入:x = 2.00000, n = -2
    • 输出:0.25000
    • 解释:$2^{-2} = 1 / 2 2 1/2^{2} 1/22 = 1/4 = 0.25$

六【解题思路】

  • 使用快速幂算法解决此题,我们可以将 x n x^{n} xn拆解计算,以提高运算速度,可将 x n x^{n} xn拆解为如下形式(//表示向下取整):
    x n = { ( x 2 ) n / / 2 , n  为偶数  x ( x 2 ) n / / 2 , n  为奇数  x^{n}=\left\{\begin{array}{ll} \left(x^{2}\right)^{n / / 2} & , n \text { 为偶数 } \\ x\left(x^{2}\right)^{n / / 2} & , n \text { 为奇数 } \end{array}\right. xn={(x2)n//2x(x2)n//2,n 为偶数 ,n 为奇数 
  • 可以注意到,每次我们只需要将 x x x更新为原来的二次方,指数 n n n变为原来的一半,这样与 x n x^{n} xn是相等的,但是减少了运算的次数,降低了时间复杂度,但是需要注意如果 n n n是奇数时,需要多乘一次 x x x,因为是向下取整。
  • 有了以上思路后,就可以撰写代码了,整个算法流程如下:
    • 初始化 r e s = 1 res = 1 res=1,目的是记录最后一次计算的值,以及当 n n n为奇数时,作为中间变量多乘一次 x x x
    • 因为题目给定的测试用例包括负指数,所以当指数 n n n是负数的时候,将问题转为大于等于0的情况计算,具体包括将 n n n变为正数或0,再将 x x x变为 1 x \frac{1}{x} x1,这在数学中显而易见,不再解释
    • 当指数 n n n不是0的时候就继续循环,如果是0,表示都已经运算结束了,退出循环即可。在循环内部算法流程如下:
      • n & 1 n \& 1 n&1表示判断当前指数 n n n是否是奇数, n & 1 = 1 n \& 1 = 1 n&1=1表示是奇数,用 r e s res res多乘一次 x x x就可以;否则表示是偶数,不用多乘一次 x x x
      • 不管是奇数还是偶数,都要进行 x = x ∗ x x = x * x x=xx这步,表示将 x x x更新为原来的二次方
      • 刚才已经将 x x x更新为原来的二次方,下一步就要将指数 n n n变为原来的一半,这样才可以和 x n x^{n} xn相等。在这里我使用的是位运算右移一位(>>1),当然,使用除法(/)直接除以2也可以
  • 最后返回结果即可

七【题目提示】

  • − 100.0 < x < 100.0 -100.0 < x < 100.0 100.0<x<100.0
  • − 2 31 < = n < = 2 31 − 1 -2^{31} <= n <= 2^{31}-1 231<=n<=2311
  • n 是一个整数 n 是一个整数 n是一个整数
  • − 1 0 4 < = x n < = 1 0 4 -10^{4} <= x^{n} <= 10^{4} 104<=xn<=104

八【时间频度】

  • 时间复杂度: O ( l o g n ) O(logn) O(logn),其中 n n n为传入的底数参数的大小
  • 空间复杂度: O ( 1 ) O(1) O(1)

九【代码实现】

  1. Java语言版
class Solution {
    public double myPow(double x, int n) {
        if(x == 0.0){
            return x;
        }
        long b = n;
        double res = 1.0;
        if(b < 0){
            b = -b;
            x = 1 / x;
        }
        while(b > 0){
            if((b & 1) == 1){
                res *= x;
            }
            x *= x;
            b >>= 1;
        }
        return res;
    }
}
  1. C语言版
double myPow(double x, int n)
{
    double res = 1.0;
    if(n < 0)
    {
        x = 1 / x;
    }
    while(n != 0)
    {
        if((n & 1) == 1)
        {
            res = res * x;
        }
        x = x * x;
        n = n / 2;
    }
    return res;
}
  1. Python版
class Solution:
    def myPow(self, x: float, n: int) -> float:
        res = 1
        if n < 0:
            n = -n
            x = 1 / x
        while n:
            if n & 1:
                res *= x
            x *= x
            n >>= 1
        return res

十【提交结果】

  1. Java语言版
    在这里插入图片描述

  2. C语言版
    在这里插入图片描述

  3. Python语言版
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IronmanJay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值