题目传送门
题意:
给你n个数的序列a。
有一种操作:选择一个区间[l , r],把这个区间的数都改为这个区间的平均数。
你可以进行任意次操作,使得这个序列的字典序最小。
输出最小字典序。
数据范围: ,。
题解:
观察点1:答案里的n个数一定是单调递增的,否则会使字典序更小。
观察点2:对1个区间进行操作后,这个区间的数都不能更小,否则可以选更大的区间。
然后你就可以考虑单调栈维护区间合并。
初始状态是n个长度为1的区间。
然后考虑向左合并,使靠左的数变小。
具体操作就是第2个区间向第1个区间合并,如果不能合并,就试试第3个区间和第2个区间合并,假如可以合并,那现在第2个区间和第3个区间合并为1个区间,即第2个区间,然后试试能不能和第1个区间合并。看不懂这句话就去看看代码,代码很清楚。
重复操作即可。
感受:
线段树构造半天。
单调队列这几天写了好几个题,却也想不到,真是无语。。。菜的可怕。。。
在div2多历练历练吧。
代码:
#include<bits/stdc++.h>
using namespace std ;
const int maxn = 1e6 + 5 ;
struct node
{
int l , r ;
double aver ;
} s[maxn] ;
int n ;
int a[maxn] ;
int main()
{
scanf("%d" , &n) ;
for(int i = 1 ; i <= n ; i ++) scanf("%d" , &a[i]) ;
int top = 1 ;
s[1].l = s[1].r = 1 ;
s[1].aver = a[1] ;
for(int i = 2 ; i <= n ; i ++)
{
top ++ ;
s[top].l = s[top].r = i ;
s[top].aver = a[i] ;
while(top > 1)
{
double temp ;
int pl = s[top - 1].l , pr = s[top - 1].r ;
int l = s[top].l , r = s[top].r ;
double paver = s[top - 1].aver , aver = s[top].aver ;
temp = (pr - pl + 1) * paver + (r - l + 1) * aver ;
temp /= (pr - pl + 1) + (r - l + 1) ;
if(temp < paver)
{
top -- ;
s[top].l = pl ;
s[top].r = r ;
s[top].aver = temp ;
}
else break ;
}
}
for(int i = 1 ; i <= top ; i ++)
for(int j = s[i].l ; j <= s[i].r ; j ++)
printf("%.12f\n" , s[i].aver) ;
return 0 ;
}