现有r个互不相同的盒子和n个互不相同的球,要将这n个球放入r个盒子中,且不允许有空盒子。则有多少种放法?
数据量很小,<= 10
题目让求方案数,明显dp
不能用“前”的思维考虑。
直接看状态:i个球,j个盒子。
对于新的球,可以选择单独放一个盒子,多出来j个状态 f[i - 1][j - 1]
也可以选择随机放到 j 个盒子里面 f[i - 1][j]
当然这里的f[i][j]直接等于了后面的式子,更像一个递推式子
int main(){
//std::ios::sync_with_stdio(false);
//std::cin.tie(nullptr);
cin >> n >> r;
if(n == 0 || r < n) {
cout << 0 << '\n';
return 0;
}
else {
f[0][0] = 0;
for (int i = 1; i <= n; i ++ ) {
for (int j = 1; j <= min(i, r); j ++ ) {
f[i][j] = j * (f[i - 1][j - 1] + f[i - 1][j]);
}
}
cout << f[n][r] << '\n';
}
return 0;
}