RC-u4 攻略分队【dfs + struct配合cmp用法】

题目
RC-u4 攻略分队
副本是游戏里的一个特色玩法,主要为玩家带来装备、道具、游戏资源的产出,满足玩家的游戏进程。

在 MMORPG《最终幻想14》里,有一个攻略人数最大达到 56 人的副本“巴尔德西昂兵武塔”,因为有在副本里死亡不能复活、机制比较整蛊等特点,一度被玩家视作洪水猛兽。

在副本的开始,我们会遇到第一个难关:攻略的玩家要分为两组,同时讨伐副本 BOSS “欧文”和“亚特”。

已知以下信息:玩家会组成 6 支队伍进入副本,其中第 i 队有 Vi位玩家(i=1,⋯,6)。
每支队伍可能会有一些特殊角色:MT(主坦克)、工兵(负责探测陷阱)和指挥(负责指挥玩家)。
我们的任务是合理安排玩家的分组,以最大程度增加副本通过概率。分组的原则如下:

要将所有队伍分成 2 组,每支队伍必须且仅属于其中一组;
每组必须有至少一个 MT(主坦克)。
如果满足上述原则的分组方案不唯一,则按照下列规则确定唯一解:

优先选择每组有至少一个指挥和至少一个工兵的方案;
如果规则 1 无法满足,则优先选择每组至少有一个指挥的方案;
如果所有方案都不满足规则 2,或经过前 2 个规则筛选后,分组方案仍不唯一,则选择两边人数尽可能接近(即两边人数差尽可能小)的方案;
如果满足规则 3 的方案还不唯一,选择讨伐“欧文”的人数比讨伐“亚特”的人数更多的方案;
如果满足规则 4 的方案还不唯一,选择讨伐“欧文”的队伍编号方案中最小的一个。
注: 一个队伍编号方案A = {a1 < ··· < am} 比B = {b1 < ··· bn}小, 当且仅当存在1 <= k <= min(m, n)使得ai = bi, 对所有0 < i < k成立, 且ak < bk.
本题就请你给出满足所有分组原则的分配方案。

输入格式:
输入第一行给出 6 支队伍的玩家数量,即 6 个非负整数 V i(0≤Vi≤8,1≤i≤6)。队伍人数为 0 时表示队伍不存在。

随后 6 行,按队伍编号顺序,每行给出一支队伍的特殊角色,格式为 ABC,其中 A 对应 MT,B 对应工兵,C 对应指挥。三种角色对应取值 0 或 1,0 表示没有该角色,1 表示有。

注:由于可能存在一人兼任多个特殊角色的情况,所以一支队伍中的特殊角色数量有可能大于该队伍的玩家数量。

输出格式:
输出分两行,第一行输出讨伐“欧文”的队伍编号,第二行输出讨伐“亚特”的队伍编号。同一行中的编号按升序输出,以 1 个空格分隔,行首尾不得有多余空格。

如果不存在合法的方案,输出GG。

#include <bits/stdc++.h>
using namespace std;
const int maxn=300+10;
int n,m,T,a[maxn][3],b[maxn];
struct node
{
    int mt[2],zh[2],gb[2];
    int sum[2];
    string ch[2];
}ans[1200],_t;
bool cmp(node x,node y)
{
    int t1=(x.zh[0] && x.zh[1] && x.gb[1] && x.gb[0]),t2=(y.zh[0] && y.zh[1] && y.gb[1] && y.gb[0]);
    if (t1!=t2) return t1>t2;
    if (!t1)
    {
        t1=(x.zh[0] && x.zh[1]);
        t2=(y.zh[0] && y.zh[1]);
        if (t1!=t2) return t1>t2;
    }
    if (abs(x.sum[0]-x.sum[1])!=abs(y.sum[0]-y.sum[1]))
        return abs(x.sum[0]-x.sum[1])<abs(y.sum[0]-y.sum[1]);
    t1=(x.sum[0]>x.sum[1]);
    t2=(y.sum[0]>y.sum[1]);
    if (t1!=t2) return t1>t2;
    return x.ch[0]<y.ch[0];
}
void dfs(int x,node y)
{
    if (x==7)
    {
        if (y.mt[0]>0 && y.mt[1]>0)
            ans[++n]=y;
        return;
    }
    if (!b[x])
    {
        dfs(x+1,y);
        return;
    }
    for (int i=0; i<=1; ++i)
    {
        node yi=y;
        yi.sum[i]+=b[x];
        yi.mt[i]+=a[x][0];
        yi.gb[i]+=a[x][1];
        yi.zh[i]+=a[x][2];
        yi.ch[i]+=char(x+'0');
        yi.ch[i]+=" ";
        dfs(x+1,yi);
    }
}
int main()
{
    for (int i=1; i<=6; ++i)
        scanf("%d",&b[i]);
    for (int i=1; i<=6; ++i)
    {
        string ch;
        cin>>ch;
        for (int j=0; j<3; ++j)
            a[i][j]=(ch[j]-'0');
    }
    dfs(1,_t);
    if (n)
    {
        sort(ans+1,ans+n+1,cmp);
        cout<<ans[1].ch[0]<<'\n';
        cout<<ans[1].ch[1]<<'\n';
    }
    else printf("GG\n");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值