小度养小猫【贪心】

本文介绍了一种使用堆数据结构解决最大收益选择问题的方法,通过维护一个最大元素的堆来高效地选取每个步骤中的最优选择。博主展示了如何在给定条件下,通过插入和删除操作,计算总收益并应用到动态规划场景中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

注意到每次可能多出来的就是 j + 1这个位置的元素,就维护一个堆(其实就是维护一堆数),每次决策取一个最大的c。可以用set实现,set最大值的堆顶是rbegin(),最小值的为begin()

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;

int main(){
    //std::ios::sync_with_stdio(false);
    //std::cin.tie(nullptr);
    ll n, k;
    cin >> n >> k;
    ll ans = 0;
    vector<pair<ll, ll>> a(n + 1);
    for (int i = 1; i <= n; i ++ ) {
        cin >> a[i].first;
        a[i].second = i;
    }   
    set<pair<ll, ll>> se;
    for (int i = 1; i <= k; i ++ ) {
        se.insert(a[i]);
    } 
    int j = k + 1;
    while(se.size())
    {
        if(j <= n) {
            se.insert(a[j]);
        }
        int pos = se.rbegin()->second;  // 迭代器直接访问要用 -> 
        se.erase(a[pos]); // set删除详见下面注释
        ans += (j * j - pos * pos) * a[pos].first;
        j ++ ;
    }
    cout << ans << '\n';
    return 0;
}
/*

    st.erase( const T item); //prototype 1 删除这个值
 
    or
 
    st.erase(iterator position) //prototype  删除迭代器,注意是迭代器,不是下标
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值