为什么用到ELK
需要进行日志分析场景:
直接在日志文件中grep(global search regular expression and print out the line,全面搜索正则表达式并把行打印出来,是一种强大的文本搜索工具)、awk(一种语言,适合文本处理和报表生成)就可以获得自己想要的信息。
但是在规模较大的场景中,此方法效率低下,面临问题包括:日志量太大如何归档、文本搜索太慢怎么办、如何多维度查询。
需要集中化的日志管理,所有服务器上的日志收集汇总。常见的解决思路是建立集中式日志收集系统,将所有节点上的日志统一收集,管理,访问。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定定位问题的效率。
一个完整的集中式日志系统,需要包含以下几个主要特点:
- 收集-能够采集多种来源的日志数据
- 传输-能够稳定的把图纸数据传输到中央系统
- 存储-如何存储日志数据
- 分析-可以支持UI分析
- 警告-能够提供错误报告,监控机制
ELK提供了一整套解决方案,并且都是开源软件,之间相互配合使用,完美衔接,高效的满足了很多场合的应用。目前主流的一种日志系统。
ELK简介
ELK是三个开源软件的缩写,分别表示:Elasticsearch、Logstash、Kibana,他们都是开源软件。新增了一个Filebeat,他是一个轻量级的日志收集处理工具,fliebeat占用资源少,适合于在各个服务器上搜索日志后传输给logstash。
Elasticsearch是个开源分布式搜索引擎,提供搜集、分析、存储数据三大功能个。他的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制,restful风格接口,多数据源,自动搜索负载等。
Logstash主要用来日志的搜集、分析、过滤日志的工具,支持大量的数据获取方式。一般工作方式为c/s架构,client端安装在需要收集日志的主机上,server端负责将收到的各节点日志进行过滤、修改等操作在一并发往elasticsearch上去。
Kibana也是一个开源和免费的工具,Kibana可以为logstash和ElasticSearch提供日志分析友好的WEB界面,可以帮助汇总,分析和搜索重要数据日志。
Filebeat隶属于Beats。目前Beats包含四种工具:
1.Packetbeat(搜集网络流量数据)
2.Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据)
3.Filebeat(搜集文件数据)
4.Winlogbeat(搜集 Windows 事件日志数据)