• 博客(717)
  • 资源 (9)
  • 论坛 (1)

原创 Elastic:如何成为一个 Elastic 认证工程师

Elasticsearch 无疑是是目前世界上最为流行的大数据搜索引擎。根据 DB - Engines 的统计,Elasticsearch 雄踞排行榜第一名,并且市场还在不断地扩大:能够成为一名 Elastic 认证工程师也是很多开发者的梦想。这个代表了 Elastic 的最高认证,在业界也得到了很高的认知度。得到认证的工程师,必须除了具有丰富的 Elastic Stack 知识,而且必须有丰富的操作及有效的解决问题的能力。拥有这个认证证书,也代表了个人及公司的荣誉。针对个人的好处是,你可以..

2020-10-28 11:54:13 1263 3

原创 Elastic 7.9 有什么新功能? - 10月22日 15:00 PM

从零开始安装 Elastic Stack,使用 Logstash 导入日志文件到 Elasticsearch。Logstash是一个功能强大的工具,可与各种部署集成。 它提供了大量插件,可帮助您解析,丰富,转换和缓冲来自各种来源的数据里面。本次分享含有调试及如何使用 Logstash 的 inputs, filters,outputs 及如何启动监控及集中管理。详细链接请参阅https://www.bagevent.com/event/6696688...

2020-07-25 09:00:03 1657

原创 Elastic:菜鸟上手指南

您们好,我是Elastic的刘晓国。如果大家想开始学习Elastic的话,那么这里将是你理想的学习园地。在我的博客几乎涵盖了你想学习的许多方面。在这里,我来讲述一下作为一个菜鸟该如何阅读我的这些博客文章。我们可以按照如下的步骤来学习:1)Elasticsearch简介:对Elasticsearch做了一个简单的介绍2)Elasticsearch中的一些重要概念:cluster, n...

2020-02-25 20:01:55 25648 15

原创 Elastic:培训视频

在这篇文章中,我将会把我写的有些内容录制成视频,供大家参考。希望对大家有所帮助。优酷的视频频道地址在这里。Elastic 简介及Elastic Stack 安装:优酷,腾讯 Elastic Stack docker 部署:优酷,腾讯 Elasticsearch中的一些重要概念(Cluster/Shards/Replica/Document/Type/Index):优酷,腾讯 开始使用El...

2020-01-06 15:31:54 5306 7

原创 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

在今天的这篇文章中,我想介绍如何在Linux及MacOS上进行安装ElasticSearch。Elasticsearch的安装是非常直接的。在今天的这篇文章中,我们介绍如果直接从已经编译好的档案(.tar.gz)中来直接安装Elasticsearch。如果大家想对Elasticsearch有一个大概的了解,请参照我的文章“Elasticsearch简介”此软件包可在Elastic许可下免费使用...

2019-08-13 14:04:03 6826 9

原创 Elasticsearch 简介

Elasticsearch是一个非常强大的搜索引擎。它目前被广泛地使用于各个IT公司。Elasticsearch是由Elastic公司创建并开源维护的。它的开源代码位于https://github.com/elastic/elasticsearch。同时,Elastic公司也拥有Logstash及Kibana开源项目。这个三个开源项目组合在一起,就形成了 ELK软件栈。他们三个共同形成了一个强大的...

2019-08-08 16:04:31 6754 13

原创 Kibana:Heatmap 可视化介绍及 how-to

在 Kibana 中,你拥有完整的数据图形表示形式,大多数情况下,这可以通过简单的折线图或条形图来完成。 但是每隔一段时间,你就需要采取不同的观点,以充分利用数据。 热图是 Kibana 可视化武器库的重要组成部分,值得关注。什么是 heatmap?heatmap 是一种可视化类型,它使用颜色显示你要表示的数据的大小。 它们用于各种数据和几种不同的类型。 对于开发人员世界中的大多数人来说,我们遇到最多的人可能是GitHub Commit Graph。比如下面就是我的 github 的活动图:.

2020-10-30 20:40:17 19

原创 Kibana:使用 TSVB table 来定制表格

在 Kibana 的可视化中,有一个 table 的可视化。我们可以通过这个表格可视化来展示我们的数据,比如:在上面的可视化中,我们可以看到尽管它能展示一些数据,但是在某些时候,我们希望展示的数据能给予我们一目了然的结果,比如当 average bytes 超过一个数据时,我们希望用一种颜色来标识出来。这样可以让我们知道是不是有异常等等。显然正常的 table 可视化不能完成这种目的。那么我们怎么办呢?我们可以使用 TSVB 中的 table 来达到这个目的。在今天的教程中,我们来展示如何.

2020-10-30 15:06:24 23

原创 Elasticsearch:使用 Elasticsearch 进行地理位置搜索

Elasticsearch 是一个功能强大的搜索引擎,支持地理查询,但并不是每个人都习惯于处理空间数据。 如果你对地理处理了解不多,或者想通过Elasticsearch了解地理处理,那么本文适合你。在我们的现实生活中,我们经常使用的滴滴打车,美团送餐,美国的 Uber, Lyft 打车,还有一些交友 apps 等等,它们都是使用 Elasticsearch 进行位置搜索的例子。Geo distance query地理距离查询返回距离点最大距离的所有文档,例如:Dolores 想认识距离她约30.

2020-10-29 16:11:19 42

原创 Beats:如何定制已经创建的 Beats template

在我之前的文章 “Beats:解密 Filebeat 中的 setup 命令” 中,我已经详述了当我们执行 setup 命令时,它会自动帮我们在 Elasticsearch 中创建一个 index template。这个 index template 的作用就是使得我们所有的索引都具有相同的字段属性,以便于我们分析数据。在实际的使用中,我们可以根据自己的使用来进行微调这个 index template。在今天的这篇文章中,我将使用一个具体的例子来详述如何进行定制。准备工作我们首先参阅之前的文章.

2020-10-28 21:12:54 68

原创 Kibana:在 Kibana 中使用 Maps 和 Timelion 分析地震数据

在之前的文章 “使用 Kibana Timelion 进行时间序列分析”,我已经介绍了 Kibana 中的 Timelion 可视化工具。在今天的文章中,我将使用 Timelion 工具来分析地震数据。这里的地图数据来源于 1994 Northrige earthquake。我们可以在地址 www.ncedc.org/anss/catalog-search.html 里下载到数据。准备数据数据来源于 ElasticON tour16 demo。我们可以使用如下的命令来进行下载:git c.

2020-10-27 10:54:26 124

转载 Kibana:如何在 Kibana 可视化中以百分比形式显示数据

进行数据分析时,要想在数字间进行有效对比,使用百分数是一项不可或缺的重要方法,当所涉及数据在样本量或总值方面表现出巨大差异时,尤为如此。通过百分比,我们可以快速准确地了解在某个维度类型上(例如时间范围、地理区域、产品线等)数据总和发生了多大变化。在本篇博文中,我们将会通过几个例子详细讲解如何在 Kibana 中使用 TSVB(时序数据可视化工具)借助常用的可视化(包括饼图、单值指标、表格或时序)计算百分比。在本篇博文中,我们将会使用 Kibana 中提供的flights和ecommer...

2020-10-25 19:58:08 178

原创 Kibana:使用 Kibana Timelion 进行时间序列分析

在 Kibana 的可视化工具里,有一个可视化的工具叫做 Timelion。Timelion 是Kibana 中时间序列的可视化工具。 时间序列可视化是按时间顺序分析数据的可视化。 Timelion 可用于绘制二维图,时间绘制在 x 轴上使用 Timelion,你可以在同一可视化文件中组合独立的数据源。 使用相对简单的语法,你可以执行高级数学计算,例如除以和减去指标,计算导数和移动平均值,当然还可以可视化这些计算的结果。总共大约有五十种不同的功能(有些还在试验中),可以用来对要分析的数据集进行切片和切块

2020-10-24 15:19:45 345

原创 Elasticsearch:运用 Go 语言实现 Elasticsearch 搜索

在今天的文章中,我将介绍如何使用 Go 语言来对 Elasticsearch 进行搜索。首先,我假设你已经对 Elastic Stack 有一定的了解。Elasticsearch 获得了极大的欢迎。 在关系数据库中搜索始终会遇到有关可伸缩性和性能的问题。Elasticsearch 是 NoSQL 数据库,在解决这些问题方面非常成功。 它提供了出色的可拓展性和性能,而最突出的功能之一就是相关性分析,它使搜索结果具有很大的灵活性。Elastic Stack安装 Elasticsearch 及 K..

2020-10-21 17:11:34 815

原创 Beats:解密 Filebeat 中的 setup 命令

在我之前的教程:Beats:Beats 入门教程 (一) Beats:Beats 入门教程 (二)我已经详述了如果启动 Filebeat 并监控系统日志。在启动 Filebeat 的过程中,有一个很重要的步骤就是:./filebeat setup这个步骤非常重要,但是描述的内容并不是很多。为什么需要这个步骤呢?它到底能够做什么呢?首先,我们在命令的输出中,我们可以看到如下的内容:$ ./filebeat setupOverwriting ILM policy is disabl

2020-10-20 14:47:19 399 1

原创 Beats:使用 Elastic Stack 来记录 Java Apps 日志

在我先前的系列文章中,我们介绍了如何使用 Elastic Stack 来分析 Spring boot 的微服务日志。这些文章是:Elastic:运用 Elastic Stack 分析 Spring boot 微服务日志 (一) Elastic:运用 Elastic Stack 分析 Spring boot 微服务日志 (二)细心的开发者可能已经看出来了,我们使用 Logstash 来分析我们的日志,把非结构化的日志转换为结构化化的日志。这在很多的场合中是非常有用的。但是这个方法有一个非常不好的地方,

2020-10-19 13:04:40 328

原创 Elastic:使用 Python 方便地实现 Elasticsearch-To-CSV 导出

在我之前的文章 “Elasticsearch:如何把 Elasticsearch 中的数据导出为 CSV 格式的文件” ,我介绍了两种方法来把一个 Elasticsearch 索引导出到一个 CSV 格式的文档中。但是据 一些人的实践,在面临海量文档的情况下,会出现 timeout 错误 (使用 CSV report),或者导出速度比较慢的情况(在使用 Logstash 的方案)。在本篇文章中,我将介绍一个使用 Python 的方法,很方便地把所需要的数据导出到一个 CSV 文件中。准备数据在.

2020-10-19 10:11:03 516 1

原创 Beats:使用 Elastic Stack 记录 Golang 应用日志

当今可用的丰富编程语言为程序员提供了用于构建应用程序的大量工具。无论是像 Java 这样的老牌巨头,还是像 Go 这样的新兴公语言,应用程序都需要在部署后进行监视。在本文中,你将学习如何将Golang日志发送到ELK Stack和Logz.io。通常可以通过查看其日志来了解应用程序的运行状况。但是,日志数据具有随时间呈指数增长的趋势。当更多应用程序部署并分布在多台服务器上时,尤其如此。 Elastic Stack 具有存储大量数据并快速,轻松地进行搜索的功能,在这里很方便。在本文中,你将学习如何导入

2020-10-17 17:40:48 185 2

原创 Elasticsearch:通过 inference pipeline 聚合为你的数据科学增加灵活性

Elastic 7.6 引入了 inference processor,用于对通过 ingest pipeline 提取的文档进行推理。ingest pipeline 功能强大且灵活,但设计用于在 ingest 时工作。那么,如果你的数据已经被摄取会怎样?引入了新的 Elasticsearch inferencepipeline 聚合,可让你将新的推理模型应用于已建立索引的数据。使用这种新的聚合类型,你可以在聚合中搜索时使用机器学习推断,并即时获取结果-实时获取最新数据。现在,你始终可以期待新的模型,.

2020-10-15 14:55:13 254

翻译 Elasticsearch:聚合所有内容:Elasticsearch 7 中的新聚合

自 1.0 版以来,聚合框架一直是 Elasticsearch 重要的一部分,多年来,它进行了优化,修复,甚至进行了一些大修。自Elasticsearch 7.0 版本以来,Elasticsearch 中已添加了许多新的聚合,例如 rare_terms,top_metrics 或 auto_date_histogram 聚合。在此博客文章中,我们将探索其中的一些,并仔细研究它们可以为你做什么。为了测试这些新的aggs,我们将在 Elasticsearch 7.9 部署中设置样本数据集。以下文档可能代表电

2020-10-14 09:48:52 239

原创 Elasticsearch:Serial Differencing aggregation 介绍

在之前的教程 “Elasticsearch:pipeline aggregation 介绍” 中,我介绍了一种 pipeline aggregation。里面有介绍一种叫做 derivative aggregation 的。先前的 derivative 可视化将存储桶与相邻存储桶进行了比较,这是日常有用的观察。 但是这些存储桶仅将一天与第二个存储桶进行比较,理想情况下,我们可能希望比较一周中某一天的存储桶,例如比较一个星期一与下一个星期一。 为此,我们将需要使用 Serial Diff 管道聚合。在实际的应

2020-10-13 11:53:20 89

原创 Kibana:treemap 可视化介绍

treemap 提供了数据的层次结构视图,非常适合可视化部分与整体关系。在 treemap 之前,我们可以通过 Pie 可视化来表达这种关系,但是不是非常直接,明了。treemap 是 Elastic 7.8 发行版的一个新的功能,只在 Lens 里提供。在今天的文章中,我们来展示如果创建一个 treemap 的可视化。准备数据在今天的教程中,我们将使用 Kibana 自带的索引来进行展示。打开 Kibana 界面:点击 Add data:这样我们的样本数据就导入进..

2020-10-11 21:35:19 123

原创 Elasticsearch:通过 shrink API 减少 shard 数量来缩小 Elasticsearch 索引

通过使用 Shrink API 使用更少的主碎片来调整 Elasticsearch 索引的大小。在 Elasticsearch 中,每个索引都包含多个分片,而 Elasticsearch 集群中的每个分片都有助于使用cpu,内存,文件描述符等。这无疑有助于并行处理的性能。 以时间序列数据为例,你将对带有当前日期的索引进行大量读写。如果该索引下降了请求,并且仅时不时地从该索引中读取数据,那么我们不再需要那么多分片,并且如果我们有多个索引,它们可能会建立并占用大量的计算能力。对于要减少索引大小的情况,可

2020-10-10 21:55:33 381

原创 Elasticsearch:如何调试集群状态 - 定位错误信息

针对 Elasticsearch 集群时,我们可以通过如下的 _cluster/health 命令来查询集群的状态:GET _cluster/health在正常的情况下,它会显示健康的状态,也就是绿色。关于监控的颜色的描述,我们可以参考我之前的文章 “Elasticsearch中的一些重要概念:cluster, node, index, document, shards及replica”。但是当我们的集群有没有被分配的 shard,或者数据有缺失,那么它的状态就会显示为黄色或者红色。上面的命令返回

2020-10-09 10:31:37 582 1

原创 Elasticsearch:Split index API - 把一个大的索引分拆成更多分片

在我们实际使用 Elasticsearch 时,随着时间的推移,我们会发现有扩容的必要。这个可能由于我们在刚开始创建项目认识不足。我们需要更多的 primary shards,这样可以提高 ingest 的速度。那么我们有什么办法来把之前的一个大的索引变成更多的小的索引呢?这个答案就是 split index API。它的基本用法如下:POST /my-index-000001/_split/split-my-index-000001{ "settings": { "index.numb

2020-10-08 11:41:21 409 5

原创 Elasticsearch:使用 alias 数据类型来遵循 ECS (Elastic Common Schema)

在很多的设计中,我们所采集的数据来自不同的数据源,从而导致数据字段名称的不一致。如果,我们在一开始就遵循 Elastic Common Schema,那么我们就不会有任何的问题。但是在实际的生产环境中,有可能在一开始我们就没有这么做,那我们该如何解决这个问题呢?比如我们有如下的两个数据:POST logs_server1/_doc/{ "level": "info"}POST logs_server2/_doc/{ "log_level": "info"}在上面的两个数据是来自

2020-10-04 11:16:04 105

原创 Elasticsearch:cat API 介绍及其使用

在 Elasticsearch 中,cat API 仅适用于使用 Kibana 控制台或命令行供人类使用。 它们不适合应用程序使用。 对于应用程序消耗,我们建议使用相应的 JSON API。所有的 cat 命令都接受查询字符串参数 help,以查看它们提供的所有 header 和信息,并且 /_cat命令仅列出所有可用的命令。在我们的实际使用中,我们,我们有时看到别人打入如下的命令:GET _cat/nodes?v&h=name,disk.avail,search.query_total.

2020-09-27 11:38:50 482

原创 Elasticsearch:深刻理解文档中的 verision 及 乐观并发控制

Elasticsearch 版本支持Elasticsearch 背后的关键原则之一是让你充分利用数据。 从历史上看,搜索引擎加载了来自单一来源的数,一般来说,它的数据是只读的。 随着使用量的增加以及 Elasticsearch 在你的应用程序中越来越重要,碰巧需要由多个组件来更新数据。 多个组件导致并发,并发导致冲突。 Elasticsearch 的版本控制系统可以帮助解决这些冲突。我们没修改一次文档,文档中的 version 数值就会自动增加1。需要版本控制 —一个例子为了说明这种情况..

2020-09-26 17:10:51 180

原创 Elasticsearch:Script aggregation (2)

在本教程中,我们将继续进行更高级的操作:重新定义 extended_stats 聚合的结果以及实现 scripted_metric 聚合。准备数据本文中的示例使用下面提供的文档,其中包含不同公司出售的单个产品类型的详细信息。 数据包括公司名称,产品名称,产品价格,产品销售市场,可销售的单位以及运输指示器。 我们首先在名为 sales 的索引:PUT sales{ "mappings": { "properties": { "companyName": { .

2020-09-23 17:00:31 147

原创 Elasticsearch:Script aggregation (1)

使用默认聚合时,开发人员通常无法获得预期的结果。 基本聚合功能也有局限性。 例如,如果要更改直方图的偏移值,就是这种情况。 由于 Elasticsearch 不提供此本机功能,因此我们使用脚本来获取所需的结果。 我们还将介绍其他使用脚本的聚合任务。在我之前的文章 “开始使用Elasticsearch (3)”,它里面也有一些涉及。在今天的文章中,我们我们来做更进一步的探讨。数据建模为了支持下面的示例,我们提供了一个包含虚拟公司员工详细信息的文档集。 我们包括每个雇员的数据,包括姓名,年龄,职位.

2020-09-23 15:14:10 133

原创 Kibana:在可视化中选择合适的 scale type 更好地洞察数据

在 Kibana 中我们做可视化时,特别是在用 terms 聚会时,有的 term 的数据数量比较多,有的 term 数据数量比较少。在这种情况下,如果我们在 Y 轴的显示上,如果选择 linear, 也就是线性显示,那么显示的图像比较难看,比如:在上面最左边的数据比较大,相反,最右边的数据比较小。在这种情况下,最右边的数据显示的不太明显。相反,如果我们把 Y 轴的显示设置为 log,那么显示的情况是这样的:如上图所示,经过这样的改造后,我们很容易看清楚最右边的一个显示的数据比较明显。在

2020-09-22 18:20:07 116

原创  Elasticsearch:理解搜索中的 precision 及 recall

当你负责搜索引擎时,不用多说,你应该充分了解有关搜索相关性的尽可能多的详细信息。 虽然大多数人不需要学习每条信息,但需要了解搜索。 你至少应该对 recall (查全率)和 precision (精度)有基本的了解。 本文将重点介绍与搜索相关性的 precision 和 recall。什么是相关性?您是否能够找到所需的所有文档? 返回了多少无关的文件? 文件排名如何?Precision vs. Recallprecsion 和 recall 是搜索相关性的两个基本指标。 给定特定查询和搜索

2020-09-21 17:49:09 146

原创 Kibana:通过 Elastic Maps 中的全局行政区层为 IP 分析带来新见解

我们喜欢 Elastic 的地图。在 Elastic Stack 中,我们使用地图可视化的所有数据都有一个核心组成部分:位置。位置可以表示报告机队车辆的实时位置,使用地理围栏限制搜索结果,从某个地理区域衡量应用程序性能指标或通过将地理坐标附加到 IP 地址来识别安全威胁。最近,我们在 Elastic Maps 中添加了一个行政区域边界层,以对你的地理空间分析进行微调。这里所谓的行政区就像我们国家的行政区划分一样,比如北京,湖南,湖北,山西等等。它是对一个地区的边界划分。这个对于我们很多的区域数据统计非常

2020-09-21 12:28:01 248

原创 Kibana:为可视化图添加一个 static 线

当我们做可视化图时,有时我们想为自己的图添加一条静态线。这条线的作用是用来表示在什么位置的统计数据是高于这个值的或低于这个值的。我们知道在通常的情况下,我们一般的可视化图是不可以做到这一点的。我们需要使用 TSVB 来说实现这个。比如,使用下图的红线,它清楚地表明了在什么时候统计数据是大于20的。准备数据在今天的教程中,我们将使用 Kibana 自带的索引来进行展示。打开 Kibana 界面:点击 Add data:这样我们的样本数据就导入进 Elasticsearch.

2020-09-21 10:51:53 609 6

原创 Elasticsearch:Snapshot 生命周期管理

在今天的文章中,我们来讲述一下 Data safety 及 security。safety 及 security 是两个不同的概念,尽管在中文很多时翻译都为安全的意思。前者的意思是指我的数据在硬件或者人为操作发生错误时,我可以通过数据的备份(比如 snapshot)以及冗余数据存储(比如多个 replica)来找回丢失的数据。Security 更注重数据的能否被非法访问。在今天的讲述中,我们将重点介绍 Elastic 所提供的 Snapshot 功能以及如何使用 Elastic 提供的 snapshot 生

2020-09-17 16:22:30 223

原创 Elasticsearch:foreach 摄入处理器介绍

foreach processor用于处理未知长度数组中的元素。这个有点和我们在编程中使用的循环是一样的。所有处理器都可以对数组内的元素进行操作,但是如果需要以相同的方式处理数组中的所有元素,则为每个元素定义处理器将变得既麻烦又棘手,因为数组中元素的数量可能未知。因此,存在 foreach 处理器。通过指定包含数组元素的字段和定义每个元素应该发生什么的处理器,可以轻松地预处理数组字段。foreach 处理器内部的处理器在数组元素上下文中工作,并将其放在 _ingest._value 键下的摄取元数.

2020-09-16 15:03:52 327

翻译 Elasticsearch:使用 GeoIP 丰富来自内部专用 IP 地址

对于公共 IP,可以创建表来指定 IP 属于哪个城市的特定范围。但是,互联网的很大一部分是不同的。在世界上每个国家都有公司专用网络,其 IP 地址的格式为 10.0.0.0/8、172.16.0.0/12 或 192.168.0.0/16。这些 IP 地址往往没有有关地理位置的真实信息。因此,Elasticsearch 和 Logstash 中内置的 geoip 过滤器/处理器不适用于这些私有 IP。Elasticsearch 和 Logstash 可以选择指定要使用的特定数据库文件(database

2020-09-16 09:25:40 263

原创 Enterprise: 如何在 Chrome 中设置 Elastic Workplace Search 为搜索引擎

Elastic Workplace Search通过将所有内容平台(Google云端硬盘,github, gira, confluence, Salesforce等)统一到个性化的搜索体验中,提高团队的生产力。 凭借其轻松和灵活的部署(在Elastic Cloud上或作为免费的自助管理下载),预先调整的相关性和直观的界面,Elastic Workplace Search可帮助您和您的队友恢复工作。 如果你对 Elastic Workplace Search 还不是很了解的话,请阅读我之前的文章:So..

2020-09-15 11:10:16 489

原创 Elasticsearch:通过 sampler 聚合来改善繁重的 Elasticsearch 聚合

结合两个 Elasticsearch 功能:sampler 聚合可以帮助创建有效的估计 facet 和见解,同时显着降低繁重和缓慢聚合的成本。Sampler aggregation 是一种筛选聚合,用于将任何子聚合的处理限制为得分最高的文档样本。典型用例:将分析重点放在高相关性匹配上,而不是可能很长的低质量匹配上 减少仅使用样本即可产生有用结果的聚合(比如 significant terms)运行成本对于不想分析整个数据集的方案,sampler 聚合是一个很好的解决方案:它提高了速度和内存使

2020-09-14 18:50:55 714

原创 Elasticsearch:IP 数据类型及其搜索

在使用 Elasticsearch 搜索 IP 地址时,我们可以把数据类型定义为 IP 数据类型。这样我们可以针对 IP 地址进行搜索。这种 IP 地址可以是 IPv4 或者是 IPv6 的形式。现在假设我们导入一个如下的数据到 Elasticsearch 中:PUT my-index/_doc/1{ "ip_addr": "192.168.1.1"}在没有定义数据类型的情况下, Elasticsearch 会把上面的字段 ip_add 映射到一个 text 及 keyword 的..

2020-09-10 16:56:36 970

images.tar.gz

Pictures for tutorials

2014-09-10

Ubuntu Core知识分享

介绍Ubuntu及其开发流程

2016-12-26

Ubuntu core introduction

介绍Ubuntu Core, snapcraft,Ubuntu Core安全,商店

2016-08-31

Scope开发介绍

在文档中介绍最新的在Ubuntu手机平台上的Scope开发知识

2015-06-29

Ubuntu上的HTML5开发

本文档介绍了如何在Ubuntu平台上开发HTML5的应用

2015-03-18

online account workshop

Ubuntu平台上的online account介绍

2015-02-03

Ubuntu手机介绍

介绍Canonical公司,Ubuntu手机平台,SDK。重点介绍Ubuntu手机平台上的Scope技术。

2015-01-16

Ubuntu应用开发

在这个文档中介绍如何在Ubuntu平台上开发应用

2015-01-04

Scope技术开发

这篇文章介绍了如何在Ubuntu平台上开发Scope。

2015-01-04

Elastic 中国社区官方博客的留言板

发表于 2020-01-02 最后回复 2020-08-03

空空如也
提示
确定要删除当前文章?
取消 删除