Elastic 中国社区官方博客

关于 Elastic Stack 及相关的任何技术

  • 博客(2338)
  • 资源 (9)
  • 收藏
  • 关注

原创 Elastic 线下 Meetup 将于 2025 年 6 月 28 号下午在南京举行

​2025 Elastic Meetup 南京站活动,由 Elastic、TechTalk 社区、新智锦绣联合举办,现诚邀广大技术爱好者及开发者参加。2025年6月28日 13:30-18:00江苏省南京市秦淮区汉中路189号平安金融中心三楼2025 Elastic Meetup 南京站_发现精彩城市生活-活动发布及直播平台!!请报名成功后,扫码加入本次活动群,接收活动相关信息讲师:Elastic 社区首席布道师 —— 刘晓国现为 Elastic 社区首席布道师。新加坡国立大学硕士,西北工业大学本硕。曾就职

2025-05-19 10:41:52 1650

原创 Elastic:如何成为一名 Elastic 认证工程师,Elastic 认证分析师及 Elastic 认证可观测性工程师

Elasticsearch 无疑是是目前世界上最为流行的大数据搜索引擎。根据 DB - Engines 的统计,Elasticsearch 雄踞排行榜第一名,并且市场还在不断地扩大:能够成为一名 Elastic 认证工程师也是很多开发者的梦想。这个代表了 Elastic 的最高认证,在业界也得到了很高的认知度。得到认证的工程师,必须除了具有丰富的 Elastic Stack 知识,而且必须有丰富的操作及有效的解决问题的能力。拥有这个认证证书,也代表了个人及公司的荣誉。针对个人的好处是,你可以..

2020-10-28 11:54:13 25517 19

原创 Elastic:开发者上手指南

你们好,我是Elastic的刘晓国。如果大家想开始学习Elastic的话,那么这里将是你理想的学习园地。在我的博客几乎涵盖了你想学习的许多方面。在这里,我来讲述一下作为一个菜鸟该如何阅读我的这些博客文章。我们可以按照如下的步骤来学习:1)Elasticsearch简介:对Elasticsearch做了一个简单的介绍2)Elasticsearch中的一些重要概念:cluster,n..........................................................

2020-02-25 20:01:55 162731 98

原创 Elastic:培训视频 - ​在生产环境中配置 Fleet Server 和 Elastic Agent 之间的安全

在这篇文章中,我将会把我写的有些内容录制成视频,供大家参考。希望对大家有所帮助。优酷的视频频道地址在这里。Elastic 简介及Elastic Stack 安装:优酷,腾讯 Elastic Stack docker 部署:优酷,腾讯 Elasticsearch中的一些重要概念(Cluster/Shards/Replica/Document/Type/Index):优酷,腾讯 开始使用El...............

2020-01-06 15:31:54 17506 12

原创 Elasticsearch 简介

Elasticsearch是一个非常强大的搜索引擎。它目前被广泛地使用于各个IT公司。Elasticsearch是由Elastic公司创建并开源维护的。它的开源代码位于https://github.com/elastic/elasticsearch。同时,Elastic公司也拥有Logstash及Kibana开源项目。这个三个开源项目组合在一起,就形成了 ELK软件栈。他们三个共同形成了一个强大的...

2019-08-08 16:04:31 173966 32

原创 Elastic Security 在 AV-Comparatives 商业安全测试中得分 100%

Elastic Security在AV-Comparatives商业安全测试中斩获双项满分,成为17家供应商中唯一在真实世界防护和恶意软件防护测试均获100%的解决方案。测试采用220个攻击场景和1,018个最新恶意样本,验证了其对复杂威胁的全面防御能力。该方案通过XDR技术提供跨端点、网络和云的统一安全视图,包含AI威胁检测、75+机器学习规则及MITRE ATT&CK映射功能,且无隐藏费用。Elastic强调安全与性能的平衡,其优化设计确保防护效率不影响系统性能。企业可免费试用获得完整XDR防护

2025-06-11 08:00:00 521

原创 在 Kibana 中为什么分配自定义 data view ID 很重要

《Kibana中被低估的自定义数据视图ID功能》摘要 本文揭示了Kibana中一个常被忽视但极其重要的功能——创建数据视图时分配自定义ID。作者通过《少年谢尔顿》剧中角色比喻,生动展示了多用户协作时,使用默认随机ID会导致的数据视图混乱问题:当管理员清理重复视图时,相关可视化会因ID关联断裂而失效。相反,采用统一的自定义ID(如"zeek")能避免重复创建、简化恢复流程,并提升团队协作效率。文章建议采用"数据集名称+空间名"的命名策略,强调这个看似微小的习惯能在大型团

2025-06-10 23:11:49 473

原创 调试 Azure 网络连接问题以支持 Elastic Cloud Serverless

了解 Elastic SRE 团队如何发现并解决 Azure Kubernetes Service (AKS) 中意外的数据包丢失问题,该问题影响了 Elastic Cloud Serverless 的性能。Elastic 的站点可靠性工程团队(SRE)在运行于 Azure Kubernetes Service (AKS) 上的 Elastic Cloud Serverless 中观察到吞吐量不稳定和数据包丢失。经调查,主要原因是 SR-IOV 接口的 RX 环形缓冲区溢出和内核输入队列饱和。为此,我们增大

2025-06-10 11:24:41 724

原创 JavaScript 中的 ES|QL:利用 Apache Arrow 工具

摘要: 本文介绍了如何结合使用Elasticsearch的ES|QL查询语言与JavaScript的Apache Arrow客户端工具。ES|QL是一种高效的数据分析管道语言,支持多种响应格式,包括Apache Arrow。Elasticsearch Node.js客户端提供了toArrowReader和toArrowTable两种工具,分别用于流式处理大数据集和一次性加载内存数据。通过示例展示了如何查询Elasticsearch的Web日志数据集,并利用Arrow格式优化性能,实现跨语言的高效数据分析。这

2025-06-10 10:21:35 505

原创 ES8 向量功能窥探系列(二):向量数据的存储与优化

本文深入解析了Elasticsearch 8.16.1的向量存储机制,重点探讨了向量索引类型(Flat、HNSW及量化索引)的构成与读写流程。腾讯云ES团队通过对源码的改造优化,在自研v-pack插件中实现了"行存裁剪"和"量化裁剪"两大创新功能,分别可节省70%和90%的存储空间。文章详细对比了不同索引配置下的存储效能变化,并展示了量化技术在保证召回率的同时显著降低内存和磁盘消耗的技术实现。这些优化已贡献给社区并集成于腾讯云ES最新版本,为向量搜索场景提供了更高效的

2025-06-08 11:05:52 714

原创 ES8 向量功能窥探系列(一):混合搜索功能初探与增强

​Elasticsearch 8.x 引入了强大的向量搜索功能,使得在大规模数据集上进行高效的k近邻(kNN)搜索成为可能。向量搜索在许多应用场景中都非常重要,例如RAG、推荐系统、图像搜索等等。本文旨在深入浅出地剖析 Elasticsearch 8.x 的 kNN 搜索和混合搜索功能,介绍其实现原理和关键技术点。同时,我们还将解读腾讯云 ES 对社区做出的相关贡献,通过源码级别的解读,帮助读者更好地理解和应用 Elasticsearch 的向量搜索功能。

2025-06-08 10:35:26 1086

原创 App Search 和 Workplace Search 独立产品现已弃用

摘要:Elastic宣布在9.0版本中弃用AppSearch和WorkplaceSearch独立产品,但现有用户在8.x版本中仍能继续使用并享有27个月支持期。这两个产品将被整合到Elasticsearch和Kibana的核心功能中,以解决原有架构的局限性,并支持语义搜索和向量搜索等新特性。Elastic推荐用户考虑迁移到Serverless架构的Elasticsearch,该方案提供自动扩展、简单设置等优势。同时,Elastic还增强了数据连接能力、AI驱动的搜索相关性功能,并推出了ES|QL查询语言。

2025-06-07 12:20:37 841

原创 向 AI Search 迈进,腾讯云 ES 自研 v-pack 向量增强插件揭秘

​2025 年 1 月,腾讯云 ES 团队上线了 Elasticsearch 8.16.1 AI 搜索增强版,此发布版本重点提升了向量搜索、混合搜索的能力,为 RAG 类的 AI Search 场景保驾护航。除了紧跟 ES 官方在向量搜索上的大幅优化动作外,腾讯云 ES 还在此版本上默认内置了一个全新的插件 —— v-pack 插件。v-pack 名字里的 "v" 是 vector 的意思,旨在提供更加丰富、强大的向量、混合搜索能力。本文将对该版本 v-pack 插件所包含的功能做大体的介绍。

2025-06-07 11:40:39 1264

原创 将 Elastic 的数据摄取转向 OpenTelemetry

Elastic全面转向OpenTelemetry作为核心数据采集架构,将其现有Beats和ElasticAgent组件重构为基于OpenTelemetry Collector的标准化方案。通过开发"Beats接收器"实现平滑过渡,保持对现有功能的完全兼容,同时获得开源生态优势。新架构将提升50%的资源效率,支持470+预置集成,并通过Fleet系统实现10万+节点的集中管理。这一战略转变使用户在保持现有工作流的同时,获得厂商中立性、管道控制力和性能优化,标志着Elastic从专有采集器向

2025-06-07 11:19:34 836

原创 节省 90% 存储!源码级揭秘腾讯云 ES 向量搜索的优化之道

本文深入解析了Elasticsearch 8.16.1版本中向量数据的存储与优化机制,重点探讨了向量索引类型(Flat、HNSW)及其对应的文件结构。文章详细介绍了向量数据的读写流程,并对量化技术(标量量化和二进制量化)进行了剖析。腾讯云ES在此基础上提出了两项创新优化:行存裁剪技术可节省70%存储空间,通过禁用向量字段在行存中的冗余存储;量化裁剪技术结合int8_hnsw量化索引进一步优化,可实现高达90%的存储节省。这些优化已集成在腾讯云ES8.16.1版本的v-pack向量增强插件中,有效降低了向量搜

2025-06-06 09:34:56 1188

原创 理解非结构化文档:将 Reducto 解析与 Elasticsearch 结合使用

摘要:本文介绍如何将Reducto文档解析技术与Elasticsearch集成,实现高效语义搜索。针对传统OCR处理扫描文档的局限性,Reducto采用视觉语言模型(VLMs)结合OCR的混合方法,保留文档结构和语义信息,显著提升解析准确率。文章演示了从文档解析、嵌入向量生成到语义检索的完整流程,展示了如何利用Elasticsearch的ELSER模型构建生产级搜索应用。这种方案特别适合金融、医疗等需要高准确性的领域,帮助企业释放80%被困在非结构化文档中的知识价值。(149字)

2025-06-06 08:41:58 1065

原创 Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

​我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 Amazon Web Services(AWS)的合作伙伴,具备为教育机构提供高质量解决方案的专业能力,助力提升学生成果,同时保障安全与隐私。获得 AWS 教育 ISV 合作伙伴资质,进一步彰显了 Elastic 在教育领域的卓越性与可靠性。作为官方认可的合作伙伴,Elastic 已被验证可为全球范围内的多种教育组织提供支持,包括 K–12 及高等教育机构,在搜索、生成式 AI、数

2025-06-05 10:32:34 1085 1

原创 3 个数据摄取技巧,彻底改变你的搜索方式

本文介绍了提升Elasticsearch数据质量的三个关键技巧:1)数据预处理,包括拆分字符串为数组和预计算字段;2)使用Enrich pipeline和推理pipeline增强数据;3)选择正确的字段类型(如rank_feature用于排名优化)。这些方法通过优化索引结构、丰富数据上下文和合理选择字段类型,能够显著提高搜索性能和查询效率。文章以社交媒体分析为例,展示了如何应用这些技巧处理帖子数据,包括转换标签格式、计算互动指标和语言识别等。这些最佳实践有助于构建更高效、易维护的搜索系统。

2025-06-05 09:18:12 672

原创 在本地电脑中部署阿里 Qwen3 大模型及连接到 Elasticsearch

本文介绍了如何利用LMStudio和Elasticsearch部署Qwen3大模型,实现本地化AI应用。主要内容包括:1. LMStudio简介及其本地部署开源模型的优势;2. Elasticsearch和Kibana的安装配置;3. Qwen3大模型的下载、部署及本地API接口测试;4. 创建OpenAI兼容连接器,将Qwen3与Elasticsearch集成;5. 使用"爱丽丝梦游仙境"文本构建RAG应用,在Playground中实现中英文问答功能。该方案提供了完整的本地化AI解决方

2025-06-04 14:11:29 1827

原创 用 AI 驱动的智能为金融服务的未来提供动力

金融机构正借助RAG(检索增强生成)、向量搜索和Elastic的BBQ(BetterBinaryQuantization)技术提升AI效能。这些技术通过构建强大的数据基础,实现实时精准的金融洞察,同时降低高达95%的内存成本。其中,BBQ技术将向量压缩至1/32,在保持高召回率的前提下搜索速度提升5倍。解决方案整合结构化与非结构化数据,优化风险评估、客户服务等场景,并确保合规透明。该技术组合为金融AI应用提供了可扩展、高性价比的实施路径。

2025-06-04 10:19:42 672

原创 连接关键点:使用 ES|QL 联接实现更丰富的可观测性洞察

ES|QL的LOOKUPJOIN技术预览版发布,为可观测性分析带来革新。该功能允许在查询时动态关联日志、指标和追踪数据,无需在数据摄取阶段进行反规范化处理,有效降低存储成本并提升分析效率。通过创建特殊查找索引,用户可以灵活关联部署信息、基础设施映射等上下文数据,实现快速根因定位。典型应用场景包括:通过部署上下文分析错误日志、利用JOIN优化存储空间等。该功能与传统的ingest时数据丰富方法形成互补,特别适合动态数据环境。目前已在Elasticsearch 8.18和Serverless中提供技术预览,支持

2025-06-03 12:57:37 1407

原创 Elastic 为所有人扩展了可用于生产的 AI 功能!

Elastic Security正式发布两项生成式AI功能:自动导入和攻击发现,推动安全运营进入AI时代。自动导入能在几分钟内构建数据集成,大幅提升效率;攻击发现将警报转化为可操作洞察,提高响应精准度。这两项功能基于Elastic的SearchAI平台和RAG技术,支持多种主流LLM模型,包括Google Gemini、Anthropic Claude和OpenAI GPT-4系列。企业战略研究显示,这些功能可显著优化安全分析流程,如将1018条警报浓缩为8个可操作发现。用户可通过Elastic Cloud

2025-06-03 11:05:53 1029

原创 AI 驱动的案例分流:几分钟内构建并部署

摘要:Elastic AI Assistant结合生成式AI工具,能快速构建自助服务应用实现客户案例分流。通过Kibana界面管理知识库,上传常见问题解答并生成语义搜索索引,在Playground中测试系统提示配置后,可部署至Streamlit应用。该方案让用户自助解决问题,降低客服工单量,同时支持随时更新知识库内容。系统还提供个性化定制选项,为构建可维护的智能客服代理提供了高效解决方案。

2025-06-03 10:22:00 1025

原创 使用 MCP 将代理连接到 Elasticsearch 并对索引进行查询

本文详细介绍了如何安装并配置MCPServer来连接Elasticsearch数据库,实现通过自然语言对话查询数据。主要内容包括:1)安装Elasticsearch和Kibana;2)获取Elasticsearch API密钥;3)下载并配置MCP服务器;4)使用Claude Desktop应用连接MCP服务器;5)通过实例演示了索引查询、数据统计等操作。该方法实现了智能代理与Elasticsearch数据的交互,展示了从创建索引到复杂查询的完整流程。

2025-06-02 20:00:34 2408 3

原创 SRE 基础知识:在站点可靠性工程中可以期待什么

《站点可靠性工程(SRE)的核心实践与价值》摘要:随着云计算和分布式系统的普及,传统IT运维面临巨大挑战。Google提出的站点可靠性工程(SRE)通过软件工程方法解决运维问题,平衡系统可靠性与创新。SRE的核心原则包括:拥抱风险、使用错误预算、设定SLO/SLI指标,以及开发自动化工具。关键实践涵盖监控与可观测性(四大黄金信号:延迟、流量、错误、饱和度)、事件管理、容量规划和变更管理。Elastic Observability等工具为SRE提供全栈可观测性解决方案,加速问题解决。SRE已成为现代组织确保系

2025-06-01 16:51:51 1001

原创 Elastic 和 AWS 合作将 GenAI 引入 DevOps、安全和搜索领域

今天,我们很高兴庆祝 Elastic 和 AWS 签署五年战略合作协议(strategic collaboration agreement - SCA)。我们的合作强调了 Elastic 和 AWS 在你采用生成式 AI 技术过程中,为你带来更高速度和更大灵活性的努力。

2025-06-01 10:30:33 1139

原创 开始使用 Elastic AI Assistant for Observability 和 Amazon Bedrock

摘要:Elastic 8.13版本正式发布了Elastic AI Assistant与Amazon Bedrock的集成功能。本文详细介绍了设置步骤:1)在Elastic Cloud创建Bedrock连接器;2)在AWS启用模型访问权限;3)配置IAM用户凭证;4)添加示例日志数据进行测试。通过向AI助手知识库添加自定义文档(如故障处理手册),可以显著提升AI对特定错误(如502网关错误)的回答质量。该集成将Elastic的可观测性数据与Bedrock的LLM能力结合,使AI回答更具上下文相关性,帮助运维人

2025-06-01 10:22:00 1130 1

原创 如何使用 Elastic 检测恶意浏览器扩展

恶意浏览器扩展已成为企业安全重大威胁,但多数组织缺乏有效检测手段。Elastic信息安全团队通过整合osquery和Elastic Stack构建了解决方案:1) 利用osquery每6小时扫描所有工作站的浏览器扩展,建立实时清单;2) 通过Elastic SIEM功能创建检测规则,当发现已知恶意扩展时自动告警。该方案克服了多用户配置文件的管理难题,能识别包括旁加载扩展在内的风险项,支持基于威胁情报的动态检测。典型应用场景包括匹配Cyberhaven事件中的46个恶意扩展IOC,有效提升企业对浏览器扩展威胁

2025-05-30 09:29:22 926

原创 如何通过 AI 和统一数据实现全方位金融风险检测

​金融服务行业不能仅依赖人工审核。了解统一数据和可解释 AI 如何帮助企业发现风险、降低成本,并领先应对不断变化的监管要求。金融服务机构正被数据淹没。从电子邮件、彭博聊天,到 WhatsApp 消息和通话,审查通信数据以发现员工和第三方可能的不当行为和金融犯罪,已成为 2025 年合规与风控团队必须履行的监管要求。Elastic 的金融服务峰会正面应这一紧迫挑战:如何高效、及时地监控并分析金融服务公司内部庞大而复杂的数字通信网络。

2025-05-29 10:19:10 837

原创 Elastic 因 AI 创新荣获两次 2025 年 Google Cloud 合作伙伴年度奖

Elastic荣获2025年Google Cloud两项年度合作伙伴奖——“数据管理与AI”和“工具类AI”;合作伙伴。这彰显了双方在AI创新领域的深度合作,特别是将Elastic的向量搜索技术集成到Google Cloud Vertex AI平台,为开发者提供支持生成式AI应用的统一解决方案。合作还拓展至IT运维领域,通过Gemini模型提升安全分析和自动化能力。Elastic提供从数据摄取到应用监控的完整AI生命周期管理,帮助企业构建安全可靠的生成式AI应用。这一成

2025-05-29 08:51:14 906

原创 混合搜索再探:引入线性检索器!

Elasticsearch推出全新的linear retriever混合搜索组件,解决了传统RRF方法仅关注排名而忽略实际分数的问题。该组件通过计算各查询结果的加权和,并支持MinMax归一化处理,使不同检索器的分数具有可比性。与RRF相比,linear retriever能更精确地反映文档重要性差异,提供更灵活可控的混合搜索体验。该功能已在Elasticsearch Serverless、8.18和9.0版本中提供,用户可通过调整权重参数优化搜索结果。

2025-05-29 08:37:38 1289

原创 转变行业与 LLM 可观测性的关键作用:如何在真实场景中使用 Elastic 的 LLM 集成

本文探讨了大型语言模型(LLMs)在金融、医疗、电信等行业的应用场景,以及Elastic的LLM可观测性解决方案如何帮助企业监控模型性能。文章重点介绍了Elastic针对Google VertexAI、Amazon Bedrock、Azure OpenAI等平台的集成功能,这些功能可提供预测延迟、错误率、token使用量等关键指标的实时监控,并通过预置仪表盘和告警机制帮助优化资源分配、确保合规性。通过案例说明,展示了LLM可观测性对提升AI系统可靠性、降低成本及维护用户体验的重要作用。

2025-05-28 10:33:53 988

原创 Elastic:选择 AI 驱动的 SIEM 的技巧

《AI驱动的SIEM:网络安全新战略》摘要 面对云化趋势和AI网络威胁,传统SIEM已无法应对现代网络安全挑战。本文阐述了选择新一代AI驱动SIEM的关键要素:1)需与业务风险状况和未来需求深度契合;2)通过自动化减轻分析师负担;3)实现跨云/终端/网络的全面威胁可见性;4)集成多层AI分析检测未知威胁;5)支持长期数据存储与实时合规监控。文章强调开放架构、灵活扩展和避免厂商锁定的重要性,建议组织选择能降低MTTD/MTTR、随数据规模弹性扩展的SIEM解决方案。

2025-05-28 09:28:49 733

原创 Elasticsearch:使用 Quepid 创建评估列表

本文介绍了如何使用Quepid工具协作创建搜索相关性评估列表。首先解释了判断列表(judgement lists)的概念及其在搜索引擎优化中的重要性,然后详细演示了在Quepid中建立评估案例的步骤:1) 连接Elasticsearch数据源;2) 定义评估字段;3) 添加代表性查询集;4) 为每个查询设定信息需求。文章重点说明了如何组织评估团队、设置评分标准,并通过具体案例展示了人工评分员如何基于文档元数据进行相关性打分。最后指出判断列表是持续改进搜索质量的基础,建议结合指标分析和迭代实验来优化搜索体验。

2025-05-27 08:00:00 1418

原创 破解搜索质量的关键:判断列表的作用

摘要:判断列表(Judgment List)是评估和优化搜索质量的核心工具,通过人工或AI对查询-结果相关性进行评分(二元或分级),为搜索算法改进提供基准。它支持离线测试,结合点击率等隐式反馈和LLM生成的判断,能全面衡量相关性、用户偏好和满意度。Elasticsearch等工具帮助构建高效搜索方案,而Quepid等平台简化了判断列表创建流程。有效使用判断列表可提升搜索准确性、用户满意度,并推动业务增长。(149字)

2025-05-26 15:37:31 1207

原创 我们是如何为 ES|QL 重建自动补全功能的

Elasticsearch团队重构了ES|QL查询语言的自动补全系统,以应对日益复杂的命令结构和用户需求。新系统采用命令专属逻辑代替通用处理,提升了代码隔离性和灵活性。此次重构解决了旧系统在代码复杂性和正交性方面的问题,为支持新功能(如基于聚合的过滤)奠定了基础,最终改善了开发者体验和用户建议质量。团队认为这次投入为ES|QL语言和编辑器的未来发展奠定了坚实基础。

2025-05-26 12:51:50 1173

原创 Elasticsearch Synthetic _source

Synthetic_source是Elasticsearch中的一种索引配置模式,用于优化存储空间。它通过不存储原始文档,而是利用doc_values等数据结构在检索时重建_source内容,从而减少磁盘占用。这种模式会修改原始文档结构,如将数组移动到叶子字段,并使用映射中的字段名。虽然能节省50%以上存储空间,但会略微降低查询速度。Synthetic_source支持大多数字段类型,但对某些特殊字段有限制,且不支持快照仓库。该功能适用于磁盘空间有限但能接受轻微性能损失的场景。

2025-05-26 09:58:28 1558

原创 Spring AI 和 Elasticsearch 作为你的向量数据库

本文介绍了如何使用SpringAI和Elasticsearch构建完整的AI应用程序。SpringAI 1.0作为面向Java的AI工程解决方案正式发布,支持多种AI模型和技术。文章重点展示了如何通过Elasticsearch的向量数据库功能实现检索增强生成(RAG),详细说明了从PDF文件摄取数据到向量存储、查询处理的全流程。示例代码演示了控制器、服务层的实现,并介绍了SpringAI的Advisors简化RAG模式。最后,文章建议通过SpringBoot Actuator监控token消耗,利用虚拟线程

2025-05-24 08:18:29 1045

原创 Elastic:什么是 DevOps?

DevOps是一种结合并自动化软件开发(Dev)和IT运维(Ops)的现代方法,旨在通过团队协作和自动化提升软件开发生命周期的效率。它强调从规划、编码到测试、部署和监控的持续反馈循环,促进快速、高质量的软件交付。DevOps实践包括持续集成(CI)、持续交付(CD)、基础设施即代码(IaC)和微服务架构等,通过自动化减少错误并加快发布速度。尽管DevOps带来诸多好处,如提高生产力、缩短上市时间和增强团队协作,其实施也面临文化转变、遗留系统整合和自动化复杂性等挑战。未来,DevOps将融入AI、机器学习、低

2025-05-23 13:56:41 1112 2

原创 Observability:什么是可观察性?

可观测性是指通过分析系统的外部输出数据来理解其内部状态的能力,在现代应用开发中尤为重要。它涉及从日志、指标和追踪等多源数据中收集信息,以深入洞察应用程序的行为。可观测性对于动态架构和多云环境至关重要,帮助软件工程师、IT、DevOps和SRE团队解读遥测数据,并通过可视化工具和AIOps等方法实现。其三大支柱是日志、指标和追踪,全栈可观测性能够实时追踪多云生态系统的性能,综合硬件、软件、云基础设施等数据。可观测性不仅提升应用性能、加快问题解决,还能改善终端用户体验和应用程序安全性,对企业的IT运维和业务成果

2025-05-23 13:33:21 881

01-AI 驱动 - 搜索的未来 刘晓国 北京 20241214

内容概要:本文由Elastic中国社区首席布道师刘晓国在北京2024年12月14日的演讲内容整理而成,重点介绍了AI驱动的Elasticsearch向量搜索与语义搜索技术。文章首先探讨了向量搜索的需求背景,包括经典搜索的局限性和向量搜索的优势。随后,详细讲解了向量相似度的基础知识,如稀疏向量和密集向量,以及Elasticsearch如何实现向量搜索。文章还涵盖了Retrievers的使用方法,以及如何在Elasticsearch中使用第三方嵌入模型,如OpenAI的CLIP模型。此外,还介绍了Elasticsearch向量引擎的最新进展,包括硬件加速、向量量化和并发查询改进等方面。最后,讨论了RAG(检索增强生成)的架构及其在生成式人工智能中的应用,特别是如何结合私有数据和大型语言模型(LLM)来解决特定领域的问题。 适合人群:大数据处理、搜索引擎和自然语言处理方向的工程师及研究者。 使用场景及目标:① 了解和掌握Elasticsearch向量搜索和语义搜索的实现方法和技术细节;② 探索如何在企业级应用中集成和使用这些技术;③ 理解RAG架构在生成式人工智能中的应用。 阅读建议:本文内容较为深入,涉及较多的技术细节和实际操作,建议读者在阅读过程中配合官方文档和示例代码,以便更好地理解和实践相关技术。

2024-12-16

02-Kibana 构建高级可视化 包春喜 北京 20241214

内容概要:本文详细介绍了Kibana在构建高级可视化中的应用,涵盖Elastic Geo类型(geo_point和geo_shape)的定义和使用方法,以及Elastic Maps的介绍。此外,文章还详细讲解了Vega的声明式语法及其在Kibana中的应用场景,帮助读者了解如何通过编写Vega语句实现复杂的自定义可视化。 适合人群:熟悉Kibana和Elasticsearch的基础操作,希望深入了解地理空间数据可视化和自定义图表的技术人员。 使用场景及目标:①在Elasticsearch中定义和使用geo_point和geo_shape类型;②利用Elastic Maps进行地理空间数据的分析和可视化;③通过Vega创建复杂的自定义图表,满足特定的可视化需求。 其他说明:文章提供了详细的示例代码和实际应用案例,帮助读者更好地理解和应用Kibana的高级可视化功能。

2024-12-16

02-Elasticsearch 8.x 向量搜索使用详解 杭州 1.6 2024

内容概要:本文详细介绍了 Elasticsearch 8.x 版本中的向量搜索技术和优化方法。首先概述了传统暴力搜索和HNSW & KNN的对比,强调了HNSW在大数据量下的性能优势。接着讨论了向量搜索在具体应用中的多种操作,如多个kNN字段的向量搜索、聚合查询、滤波器在近似kNN搜索中的重要性和效果。此外,还涉及了使用 RRFRanking 算法对混合搜索引擎的结果进行排序,以及使用第三方机器学习模型进行语义搜索的方法和技术细节。最后,提到了Elastic训练的稀疏召回模型ELSER及其优势。 适合人群:Elasticsearch 开发者,数据科学家,搜索系统架构师。 使用场景及目标:①优化向量搜索性能,特别是在大规模索引上的查询速度;②理解并向量化搜索引入更多高级功能,如语义搜索和混合评分机制。 其他说明:文中提供了多个实践案例和优化技巧,有助于读者快速掌握 Elasticsearch 在复杂搜索场景中的应用。

2024-12-10

高管指南:如何将生成式AI融入运营

内容概要:本文是一本高管指南,详细介绍如何将生成式 AI 技术融入业务运营,从理论基础到实践步骤,涵盖了生成式 AI 的定义、发展现状及其关键技术。文章通过具体的行业案例,展示了生成式 AI 在电信、金融、零售等多个行业中的应用效果,提出了一套六步走的具体实施方案,强调了从试验到正式实施过程中需要注意的关键点,如数据安全、模型选择和管治等问题。 适合人群:企业高管、技术负责人、项目经理和其他希望了解如何利用生成式 AI 提升业务效能的读者。 使用场景及目标:本文适用于企业在数字化转型过程中,希望通过生成式 AI 优化业务流程、提高工作效率和客户满意度的各种场景。目标是帮助企业和团队在实际运营中有效应用生成式 AI,实现业务增长和技术进步。 其他说明:生成式 AI 的实施需要考虑数据隐私和安全问题,同时还需要团队的合作和技能培训。通过逐步推进和不断迭代,最终实现生成式 AI 的全面融合,为企业带来更大的商业价值。

2024-12-05

Elastic帮助企业发挥数据的作用

内容概要:本文详细探讨了IT领导者如何通过实时数据分析解决方案来提升企业的数字客户体验、运营弹性和网络安全性。具体介绍了数据挑战和业务复杂性增加的原因,提出了搜索驱动型解决方案的优势和应用场景,并列举了多个实际案例来说明其效果。同时,文中对比了传统方法与搜索驱动型解决方案的优劣,强调了后者在实时性和易用性方面的显著优势。 适合人群:对企业IT管理和数据分析感兴趣的IT专业人士、项目经理和技术负责人。 使用场景及目标:① 改善数字客户体验,确保系统稳定性和安全性;② 优化数据处理和检索速度,减少数据孤岛;③ 实现统一的平台管理和灵活的架构部署,提高运营效率;④ 利用Machine Learning和AIOps技术实现智能化数据分析。 其他说明:文章通过实例展示了Elastic的解决方案,包括Elastic可观测性、Elastic安全性和Elastic企业搜索,为企业提供了具体的实施路径和方法。阅读过程中,可以通过实际案例更好地理解技术的实际应用和带来的效益。

2024-12-05

Elastic最新产品及解决方案

内容概要:本文介绍 Elastic 的最新产品及解决方案,帮助企业解决数据挑战并加速商业成功。主要内容包括数据孤岛和重复数据的问题及其解决方案、提升用户体验、降低安全风险和优化运营等方面的措施。强调了通过Elastic提供的全面可观测、安全和搜索解决方案来实现业务成长的具体方法和技术优势。文中还详细介绍了Elastic的技术架构、功能特点以及与其他产品的对比,展示了Elastic作为行业领导者的地位和市场表现。 适用人群:企业管理者、IT决策者、数据分析专家、网络安全专业人员和研发工程师。 使用场景及目标:旨在帮助企业和组织更好地利用数据资产,具体应用场景涵盖了日志管理、APM监控、安全分析、AI/ML模型构建等多个方面,目的是构建弹性业务流程、提高运营效率、保障信息安全和改善客户体验。 其他说明:Elastic提供了一个强大而灵活的数据平台,通过整合各类先进的技术如机器学习、实时分析等,为企业提供了广泛的服务范围,包括但不限于搜索引擎优化、安全性增强和业务智能化。此外,它还支持多种部署模式(公有云、私有云和本地部署)以满足不同类型客户的个性化需求。

2024-12-05

02-ES-小工具撬动大杠杆- 日常高效运维 Elastic - 尚雷 线上 20241128

如何通过编写自动化运维脚本处理 Elastic 故障、降低人工运维成本 1、 如何快速平衡节点分片 2、 如何快速处理索引未分片 3、 如何处理 Kibana 程序宕无法访问 4、 如何获统计索引占用空间大小

2024-11-29

01-Elastic 向量搜索及 构建 RAG 应用 - 刘晓国 线上 20241128

1、为什么需要向量搜索? 2、向量相似度基础知识 3、使用 Elastic 实现向量搜索 4、检索增强生成 - RAG

2024-11-29

05-Elastic Stack 在企业安全运营中的实践和探索- 余锡琨 成都 20240921

在现代企业中,安全和合规管理已经成为不可忽视的关键领域。随着网络威胁的不断演变和全球监管要求的日益严格,企业需要具备强大的工具来应对这些挑战。Elastic Stack,以其高度可扩展的搜索、分析和可视化能力,为企业提供了一个强大的安全实践平台。本次演讲将详细探讨如何利用 Elastic Stack 的组件,如 Elasticsearch、Logstash、Kibana(以及Beats),来构建和优化企业的安全监控系统,从而实现高效的威胁检测和合规管理。

2024-09-29

04-腾讯云ES AI增强与向量检索特性介绍 - 陈月望 成都 20240921

腾讯云 ES 结合 AI 技术,推出向量检索能力,实现文本、图像的多模态智能搜索。通过内置模型和机器学习节点,提供从向量生成到检索的全流程服务。同时,结合 LLM 大模型、腾讯云内核优化特性,持续优化查询转换和数据向量化能力,为 打造高效、准确的 RAG 系统 提供一站式解决方案。

2024-09-29

01-Elasticsearch 简单而高效的管道查询语言- ESQL刘晓国 成都 20240921

Elasticsearch 查询语言 (ES|QL) 提供了一种强大的方法来过滤、转换和分析存储在 Elasticsearch 中以及未来其他运行时中的数据。 它旨在易于最终用户、SRE 团队、应用程序开发人员和管理员学习和使用。用户可以编写 ES|QL 查询来查找特定事件、执行统计分析并生成可视化效果。 它支持广泛的命令和功能,使用户能够执行各种数据操作,例如过滤、聚合、时间序列分析等。 Elasticsearch 查询语言 (ES|QL) 使用 “管道”(|) 逐步操作和转换数据。 这种方法允许用户组合一系列操作,其中一个操作的输出成为下一个操作的输入,从而实现复杂的数据转换和分析。

2024-09-29

02-kibana 创建高级可视化 - 包春喜 成都 20240921

kibana 自带了很多种我们常见的可视化图表类型,例如柱状图、饼图、表格和地图等。这些自带的可视化图表可以帮助我们在日常使用中更好的观察和分析我们的数据。但是在实际使用中我们有的时候可能需要做大屏展示或者更多个性化的展示需求,所以针对这种个性化展示需求我们可以将 kibana 和 vega 结合使用来实现。

2024-09-29

02- Elastic Meetup-如何系统化的备战 Elastic认证专家考试 - 铭毅天下 线上 20240918

​1.Elastic 认证专家考试介绍 ​2.考纲介绍 ​3.备战介绍

2024-09-18

01 - 一次生产集群 ES Watcher 失效的深度排查与分析 全过程剖析与解决方案 - 尚雷 线上 20240918

​1. ES watcher 知识介绍 ​2. 生产环境 watcher 失效问题排查及分析处理过程

2024-09-18

01- Elasticsearch 简单而高效的管道查询语言 - 刘晓国 南京 20240825

1,为什么需要向量搜索? 2,向量相似度基本知识 3,使用向量搜索,RAG 结合大语言模型来避免 LLM 幻觉

2024-08-25

03-ES APM全观测实战 - 陈文磊 南京 20240825

1.ES APM 使用背景介绍 2.ES APM 功能使用介绍 3.ES APM 实战介绍

2024-08-25

02-ES在互联网公司中应用及优化过程 - 尚雷 南京 20240825

1.ES 架构介绍 2.ES 节点扩缩容 3.ES 的优化记录

2024-08-25

03-未来运维之道- Elastic Al助手的高效运维与数据智能 - 李捷 深圳 20240727

1. Elastic AI 助手概述:定义与功能简介 2.Elastic AI 助手核心使用场景介绍 3.实战演示:Elastic AI 助手提升运维效率

2024-07-27

04-十倍性价比蜕变:腾讯云ES全新架构助力日志场景降本增效 - 陈曦 深圳 20240727

腾讯云 ES 全新技术栈:采用读写分离、存算分离和查询/IO 并行化等先进技术,广泛应用于日志场景,实现冷热数据一体化搜索及弹性伸缩能力。 2023年助力腾讯云 CLS 节省过亿元成本,助力外部客户如跨越、嘀嗒等,成本普遍降低30%~80%。

2024-07-27

02-腾讯云 ES8 新一代高性能高精度 RAG 向量检索引擎 - 黄国航 深圳 20240727

腾讯云 ES 不仅提供了相对于传统向量数据库的更全面的 RAG 解决方案,同时在性能方面也有着独特的优势。 腾讯云 ES RAG 方案凭借紫霄 GPU 的强大性能和深度优化的自研内核,大幅提升了文本搜索与向量检索的效率和精度。

2024-07-27

腾讯云 ES AI 搜索优化实践 刘忠奇 线上 20250605

1. RAG 架构的搜索增强实践 2. 自研 v-pack 插件向量增强技术解析 * 存储降本九成:向量裁剪技术 * 准召提升手段:多算法融合排序框架

2025-06-05

ES/Ksibana 双MCP框架下的新一代AiOps实践 Luke 线上 20250521

内容概要:本文介绍了Elasticsearch和Kibana在双MCP框架下实现的新一代AIOps实践。作者Luke Azmat Ablat是AI解决方案架构师,专注于Elasticsearch在AI领域的应用,特别是在低资源语言搜索体验和复杂混合搜索方面的优化。文中强调了MCP(模型上下文协议)的重要性,它由Anthropic提出并被广泛认可,旨在统一AI模型与外部数据源的交互方式。通过MCP协议,Elasticsearch和Kibana能更好地结合LLM能力,实现分钟级别的故障排查和根因分析,极大提升了AIOps效率。具体应用包括实时搜索、可视化管理和智能交互,涵盖从集群状态检查到异常区域深度调查等多个场景。; 适合人群:对AI运维(AIOps)、Elasticsearch和Kibana有研究兴趣或工作需求的技术人员,尤其是从事IT运维、数据管理和AI开发的专业人士。; 使用场景及目标:①利用MCP协议整合Elasticsearch和Kibana,实现高效的自动化根因分析;②通过自然语言交互简化集群管理和数据分析流程;③优化数据洞察,提高故障排查速度,从数小时甚至数天缩短到几分钟。; 其他说明:本文不仅探讨了技术理论,还提供了实战演示,展示了如何在现有环境中部署和使用MCP框架。未来计划包括开源大模型记忆模块和支持中英混合搜索等功能,进一步扩展Elasticsearch的应用范围。

2025-05-22

03-Elasticsearch跨境电商搜索优化实践 欧阳楚才 杭州 20250419

内容概要:本文由欧阳楚才分享,主要介绍了Elasticsearch在跨境电商搜索优化中的实践。文章首先指出跨境电商搜索面临的问题,如搜索词意图丰富、分词准确性、搜索关键词多义等,随后详细阐述了搜索业务架构,包括意图识别、类目预测、实体识别、同义词扩展、分词处理、尺寸识别、停用词过滤、词干提取等方面的技术细节。接着,文章探讨了搜索召回和排序机制,强调了通过字段加权计算相关性评分和点击率预测CTR模型来优化搜索结果的重要性。最后,还涉及了性能压测、商品属性字段聚合优化以及数据埋点等内容,旨在提升搜索服务的整体性能和用户体验。; 适合人群:从事跨境电商、搜索引擎优化、Elasticsearch技术应用的相关从业人员,尤其是有一定Elasticsearch基础的研发人员和技术管理者。; 使用场景及目标:①理解和解决跨境电商搜索中的常见问题,如搜索词意图识别、多语种分词、关键词多义性等;②掌握通过类目预测、实体识别、同义词扩展等方法提高搜索召回率和准确性的技术手段;③学习如何通过性能压测、数据埋点等手段优化搜索服务的性能和用户体验。; 其他说明:本文提供了丰富的实际案例和技术细节,建议读者结合自身业务场景进行实践,并参考文中提供的具体配置和优化方法,不断调整和改进搜索系统。

2025-04-19

01-AI 驱动 - 搜索的未来 刘晓国 杭州 20250419

1)为什么需要向量搜索? 2)RAG 是什么? 3)Elastic 在向量搜索上的最新进展 4)案例分析

2025-04-19

02-阿里云Elasticsearch向量引擎百亿级数据优化实践 魏子珺 杭州 20250419

深度解析阿里云 Elasticsearch 向量引擎从8.0到8.x最新版本的技术跃迁,揭秘 Elasticsearch 向量引擎如何处理百亿级向量数据。分享向量引擎与文本搜索、AI 模型的无缝整合方案,探讨如何通过混合检索能力优化 RAG(检索增强生成)、Deep Search 等企业级场景。

2025-04-19

05-ES AI Assistant集成 DeepSeek QwQ,搭建智能运维助手 槐新 杭州 20250419与应用场景演示

内容概要:本文详细介绍了如何通过集成DeepSeek/QwQ模型搭建基于Elasticsearch(ES)的智能运维助手,以提升运维效率和问题解决能力。文章首先阐述了大语言模型(LLM)在知识问答场景中的局限性,如幻觉问题、知识受限等,进而引出检索增强生成(RAG)技术的优势,包括实时更新知识库、可解释性和减少幻觉。接着,文章介绍了新一代AI搜索应用——Agentic RAG,它通过引入人工智能代理,实现了多源协同检索、多轮交互和复杂任务处理的能力。此外,文章还展示了Elasticsearch的功能及其与DeepSeek/QwQ的深度集成,具体包括实时状态诊断、动态生成可视化数据看板、智能查询构建等。最后,通过几个实际应用场景的演示,如集群运维、可视化分析和DSL查询生成,展示了该智能运维助手的强大功能。 适合人群:具有运维经验的IT工程师、系统管理员以及对Elasticsearch和AI技术感兴趣的开发者。 使用场景及目标:①通过自然语言指令自动构建精准查询语句,实现查询构建-执行-优化的全流程自动化;②辅助集群运维和索引管理,提供智能建议,降低技术门槛;③进行可视化分析,帮助用户快速理解日志信息,生成相关图表;④支持多模态向量搜索,提升搜索精度和开发体验。 阅读建议:由于本文涉及大量技术细节和实际操作步骤,建议读者在阅读时结合实际案例进行理解和实践,尤其是对Elasticsearch和AI技术的应用有初步了解的读者,可以通过动手实验加深理解。

2025-04-19

04-Higress x Elasticsearch构建更智能的AI网关 程治玮 20250419

介绍 Higress AI 网关在推理服务场景下提供的多模型适配、故障切换、多租户管理、Token 限流与内容安全等核心能力,并深度集成 Elasticsearch 实现语义化缓存、RAG 搜索和可观测等高级功能。

2025-04-19

00-Elastic Pioneer-项目

内容概要:Elastic China Pioneer Program(先锋者计划)是Elastic中国发起的大使招募计划,旨在汇聚生态伙伴、用户及开发者力量,共同推广Elastic搜索技术。该计划明确了Pioneer的使命为传播Elastic技术魅力、分享应用心得,助力Elastic在中国市场的发展。Pioneer可通过发表演讲、撰写文章、录制视频、GitHub代码贡献、提供解决方案等方式获取积分,不同形式的贡献对应不同分值。活动设有严格的审核机制,确保公平公正,参与者可凭作品质量获得相应积分,有广泛影响力的贡献还能得到额外奖励。此外,该计划还设立了月度和年度榜单机制,月度榜单每月评选一次,年度榜单前三名可获直通Elastic ON新加坡站等丰厚奖励,所有奖励均与积分挂钩,鼓励持续贡献。 适合人群:热爱Elastic技术,愿意为其发声的生态伙伴、广大用户及社区开发者。 使用场景及目标:①通过多种方式宣传推广Elastic技术,扩大其在中国市场的影响力;②激励更多人参与到Elastic的技术生态建设中来,推动Elastic技术的发展。 其他说明:活动期间,Elastic官方有权对提交内容进行二次加工、修改、传播,优秀内容将通过官方渠道推广分享。

2025-04-19

Elasticsearch 8.17 Logsdb:企业降本增效利器 程地华 线上 20250416

内容概要:本文介绍了Elasticsearch 8.17 LogsDB作为企业降本增效的利器,主要针对传统日志存储面临的高昂成本和低效查询性能的问题。Elasticsearch 8.17 LogsDB通过多种优化技术,如合成源优化、压缩算法优化、索引排序优化、块编解码器优化、压缩和分段合并优化,显著降低了日志数据的存储需求,提升了查询效率。具体而言,合成源优化去除了不必要的行存,压缩算法优化实现了快速无损压缩,索引排序优化提高了存储效率,块编解码器优化针对不同字段提供不同的编码策略,压缩优化了词典,分段合并优化则通过删除冗余信息节省空间。性能对比显示,LogsDB在系统日志、应用程序日志和审计日志三种类型的日志存储优化效果显著。应用场景包括大规模日志存储、企业级日志管理和实时日志监控与分析。 适合人群:从事日志管理和数据分析的技术人员,尤其是关注日志存储成本和查询性能的企业IT管理者和技术团队。 使用场景及目标:①大规模日志存储:显著减少存储空间,降低存储成本;②企业级日志管理:提高存储效率,优化查询性能,简化管理流程;③实时日志监控与分析:高效处理和查询海量日志数据,快速发现和解决问题。 其他说明:本文详细介绍了如何创建索引生命周期、索引模板、数据流以及配置写入等具体操作步骤,为企业提供了完整的实施指南。通过这些优化措施,企业可以在整个索引生命周期中持续受益,进一步降低总拥有成本。

2025-04-17

04 - 腾讯云 ES AI 搜索优化实践 - 刘忠奇 武汉 20250329

内容概要:本文详细介绍了腾讯云Elasticsearch(ES)在AI搜索优化方面的实践成果。首先探讨了一站式RAG(检索增强生成)架构的应用案例,如微信读书‘AI问书’和敦煌数字藏经阁,展示了其在智能检索、问答系统等方面的能力。接着阐述了向量裁剪技术,通过多种索引方式(无向量索引、Flat向量索引、HNSW向量索引等)显著降低了存储成本,最高可达90%。最后介绍了多算法融合排序框架,包括rank_fusion、score_fusion和rerank_fusion三种方法,提升了搜索结果的准确性和召回率。此外,还涉及了嵌入推理、对话推理等功能模块,进一步增强了系统的灵活性和实用性。 适合人群:从事搜索引擎开发的技术人员,尤其是对Elasticsearch及其AI增强功能感兴趣的研究者和从业者。 使用场景及目标:①希望通过RAG架构实现高效智能检索和问答系统的开发人员;②需要降低向量存储成本的数据科学家和技术经理;③希望提高搜索结果质量和用户体验的产品经理和运营人员。 其他说明:文中提到的具体技术细节和应用场景有助于读者深入了解腾讯云ES在AI搜索领域的最新进展和技术优势。

2025-03-31

02 - ES 在绿盟企业安全平台的应用实践 - 陆攀 武汉 20250329

内容概要:本文详细介绍了Elasticsearch(ES)在绿盟企业安全平台中的大规模应用及其优化路径。首先概述了安全大数据分析的典型场景和所面临的技术挑战,如PB级别的数据量、Ad-hoc查询性能、集群稳定性和运维成本等问题。接着阐述了ES集群的具体应用场景,包括日志查询、仪表盘展示和事件告警等功能模块。针对这些问题,文中提出了多项优化措施,如多实例部署、角色分离、master节点升级、_id移除到堆外、引入混合存储等方法,有效提升了系统的稳定性和性能。最后还讨论了写入性能方面的改进,如避免多盘陷阱、采用本地写入方式、实施预判引擎以及调整动态mapping设置等。 适合人群:从事信息安全领域的技术人员,尤其是负责大型分布式系统架构设计和技术选型的专业人士。 使用场景及目标:适用于需要处理海量日志数据的企业级安全平台建设,旨在提高数据分析效率、增强系统可靠性和降低运营维护难度。 其他说明:本文不仅提供了理论指导,还分享了许多实际案例和具体实施方案,对于希望深入了解ES集群管理和调优的读者来说非常有价值。

2025-03-31

01 - AI 驱动 - 搜索的未来 -刘晓国 武汉 20250329

内容概要:本文由Elastic中国社区首席布道师刘晓国主讲,探讨了AI驱动的搜索技术的发展方向,特别是Elasticsearch在向量搜索和语义搜索方面的创新。文章详细介绍了向量搜索的基本概念、实现方法以及具体应用场景,如图片相似度搜索、混合搜索、语义搜索等。此外,还讨论了Elasticsearch在硬件加速、模型管理、推理API等方面的最新进展,以及如何通过Retrieval Augmented Generation (RAG) 技术提升搜索质量和安全性。 适合人群:对AI驱动的搜索技术感兴趣的开发者、数据科学家、企业IT决策者。 使用场景及目标:适用于需要高效、精准搜索的企业级应用,尤其是涉及大规模非结构化数据处理的场景。目标是帮助用户更好地理解和应用最新的搜索技术,提升业务效率和用户体验。 其他说明:文中提供了丰富的技术细节和实例,包括向量相似度计算、模型训练与部署、搜索架构优化等方面的内容。同时,还提到了Elasticsearch与其他AI工具和服务的集成,如OpenAI的CLIP模型、HuggingFace等。

2025-03-31

05 -Elasticsearch 存算分离架构在小米的应用实践 - 周明裕 郑钧元 武汉 20250329

介绍了 ElasticSearch 服务存算分离架构在小米的技术演进过程和实现思路,日志场景可实现单集群 50% 成本优化,提升整体技术性价比

2025-03-31

03 - Agentic RAG 构建之路 - 李捷 武汉 20250329

内容概要:本文详细介绍了Elasticsearch(ES)作为构建Agentic RAG(检索增强生成)系统的理想引擎的原因。首先探讨了传统RAG系统的局限性,然后重点阐述了ES如何通过其强大的查询规划、工具使用、动态查询规划以及数据超融合等功能克服这些问题。文中还展示了具体的案例研究,如财务风险报告、生产线良品率分析、市场销售情况评估等,强调了ES在处理复杂查询、多源数据融合和实时数据分析方面的卓越表现。此外,文章讨论了ES提供的多种查询语言和支持的广泛功能,如多模态嵌入、GPU加速、自动分块策略等,进一步证明了它在构建高效、灵活的Agentic RAG系统中的独特地位。 适合人群:对构建高级检索增强生成系统感兴趣的开发者和技术决策者,尤其是那些希望利用Elasticsearch提升数据处理能力和智能化水平的专业人士。 使用场景及目标:适用于需要处理大量异构数据的企业,旨在提高数据检索效率、增强分析能力、优化业务流程。具体应用场景包括但不限于财务风险管理、生产质量监控、市场营销分析等。 其他说明:文章不仅深入剖析了技术细节,还提供了实际操作指南和最佳实践建议,帮助读者更好地理解和应用

2025-03-31

02-GraphRAG 和 Elasticseach 8 的创新实践 - 徐胜 上海 20250222

主要分享结合 Elasticsearch 8 的最新特性和微软的最新技术 GraphRAG,来实现垂域知识库的智能体知识问答的方法和技术案例。Elasticsearch 8 里面的混合检索和多路召回技术,和知识图谱完美结合,实现了更优秀的问答效果。

2025-03-03

01-AI 驱动 - 搜索的未来 - 刘晓国 上海 20250222

内容概要:本文探讨了AI驱动的未来搜索技术,特别是通过Elasticsearch实现的向量搜索和语义搜索。首先介绍了为何需要向量搜索及其基本概念,随后深入讲解了Elasticsearch中的向量搜索实现细节、向量相似度测量方法,以及如何整合图像和文本搜索。接着,描述了向量和经典搜索混合的方法,强调了RAG(检索增强生成)的作用。最后,文章讨论了Elasticsearch在硬件加速方面的进步及未来的发展方向,如稀疏向量搜索和学习排序等新技术的应用。 适合人群:熟悉搜索引擎和机器学习的基础知识的技术爱好者和专业工程师。 使用场景及目标:帮助开发者理解和掌握最新的AI驱动搜索技术,包括搭建高效能的语义和向量搜索系统,以及优化搜索结果的相关性和速度。同时,探索将这些先进技术应用于实际项目中解决具体业务问题的可能性。 其他说明:文中提供了许多具体的示例,如基于变压器模型的文字向量表示,图片相似度查找实例,并展示了使用Elastic Stack实现复杂混合搜索的实际操作。还涉及到一些高级特性,如KNN查询、ELSER模型训练、以及Retriever API的设计原理。

2025-03-03

04-Elasticsearch 在 AI 驱动下的检索新特性 - 槐新 上海 20250222

内容概要:本文详细介绍了阿里云 Elasticsearch 在 AI 技术推动下所发展的新型搜索能力。涵盖了语义搜索、多模态搜索、RAG(检索增强生成)、AI 助理等方面的新特性和技术进步。特别是在向量搜索方面,阿里云 ES 向量增强版能够高效处理结构化和非结构化数据,将其转化为向量形式,极大提升了搜索效率和精度。此外,还探讨了性能瓶颈及解决方法,以及弹性架构、数据安全性等重要特点,展现了该产品的高性能、低成本和技术灵活性。 适合人群:对于希望深入了解现代搜索技术和向量索引的技术开发者、工程师、研究学者及有兴趣了解前沿科技的应用程序管理员。 使用场景及目标:适用于需要处理大量文本、图像、音频视频等多媒体资料的企业和个人用户。旨在提高搜索系统的智能化水平,帮助企业更快更准地获取所需信息,并优化用户体验。例如,在客服、电商、医疗等领域实施多模态检索和服务机器人等功能,可显著增强业务竞争力。 其他说明:文中提到多个具体案例和技术细节,如性能测试、硬件加速指令的应用、模型量化的优势等,强调了技术的实际应用价值和发展趋势。同时展示了与第三方平台的良好协作,提供了丰富的接口和支持,方便用户的集成与

2025-03-03

03-基于 ES 与 LLM 技术构建 B站大数据运维智能体实践 - 张勋祥 上海 20250222

内容概要:本文由哔哩哔哩资深开发工程师张勋祥讲解了基于Elasticsearch(ES)和大型语言模型(LLM)技术,为解决B站庞大的运维挑战所采取的策略。首先,介绍了当前面临的业务现状,即大量问题咨询以及多样化计算引擎带来的复杂运维问题,这些问题使得自动化运维变得尤为迫切。其次,在详细的场景分析基础上提出并实施了一套智能运维系统。该系统依托于私域知识库来解答咨询和支持故障诊断等功能,涵盖Flink、Spark等多个主流组件,显著提升了处理效率与准确性。此外,针对关键的技术难题如查询改写优化等问题,文中分享了一系列有效的解决手段。最后展示了具体应用场景,如对Flink的作业断流现象进行分析。同时对未来发展规划进行了探讨,强调将继续推进运维智能化水平。 适用人群:适用于有兴趣于大数据架构下智能运维解决方案的研发人员和技术经理,特别是从事Flink、Spark等领域工作的人群。 使用场景及目标:本研究旨在为面临大规模分布式系统的团队提供有价值的见解和技术指导,帮助他们更好地理解和应用智能运维方法论来应对复杂场景中的各类运维挑战。 其他说明:文章提供了丰富的图表及案例分析,便于读者直观地掌握

2025-03-03

03-Elasticsearch 在 AI 检索与 Serverless 模式成本优化的新特性 王亚宁 北京 20241214

本次议题将深入探讨 Elasticsearch 在 AI 检索和 Serverless 模式方面的最新进展,重点介绍如何利用这些新特性提升检索体验、快速搭建企业级 RAG 服务,以及在日志场景如何通过 Serverless 模式实现显著的成本优化和性能提升。

2024-12-17

04 - 降本增效的利器,认识一个不同的 Elastic 顾鹏飞 北京 20241214

内容概要:本文介绍了Elastic作为一个领先的AI搜索引擎公司,其全球布局及在中国区的业务生态。强调了Elastic解决方案帮助企业从全量规模化的数据中快速获取价值,提升效率,降低成本。文中详细阐述了Elastic三大核心方案(可观测性、安全和搜索)的具体功能及其如何帮助企业构建灵活的解决方案。同时,文档还介绍了Elastic的两项关键技术——跨集群复制(CCR)和可搜索快照(searchable snapshot),这两项技术大大提升了企业在混合云环境下的容灾能力和存储成本的优化。 适合人群:对Elastic及其技术感兴趣的企业决策者、IT技术专家及数据科学家。 使用场景及目标:帮助企业利用Elastic的技术方案提升数据处理和分析能力,优化IT基础设施,降低成本,提高运营效率,更好地应对复杂多变的数据安全和性能需求。 阅读建议:本文详细介绍了Elastic的各项技术和实际应用案例,读者可以通过具体案例深入了解Elastic的技术优势和实施效果。

2024-12-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除