POJ 1015 Jury Compromise(dp,背包?)

题目大意:

由n个节点,每个结点具有权值p、d,从中选出m个结点,要求总p与总d值相差最小,且在差值最小的选法中总和最大

思路:

dp[i][j][k]表示前i个节点中选j个差值为k时和最大的情况。

PS:最开始做的时候因为差值可能为负,和总是正的,所以想用dp[i][j][k]表示前i个选j个和为k时差最小的情况,后面一直wa发现虽然解决了下标问题,但当dp[i][j][k]可以为+1或-1时(或其他数),两种状态后面都可能用到都需要保留,所以得用k表示差,值表示和,这样就保留了所有需要的状态。差加上一个偏移量保证下标为正。

转移方程与背包一样

dp[i][j][k] = max(dp[i-1][j][k], dp[i-1][j-1][k - sub[i]] + sum[i])

将i滚动掉

dp[j][k] = max(dp[j][k], dp[j-1][k - sub[i]] + sum[i])

因为要保证dp[j][k]的状态是可达到的,将dp初始化为一个极小的负数,保留dp[0][0],这样只要dp[i][k] > 0,那么就是个可以达到的状态。

本题还要求输出所有选出的点,故要保存每次做出的决策。

用pre[i][j][k]标记该状态是由放入当前节点得到的,就可以找到之前的状态pre[i0][j - 1][k -sub[i]],i0 < i,一路回溯到k为0

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 210;
const int maxm = 21;
int dp[maxm][40 * maxm],pre[maxn][maxm][40 * maxm];		//dp[i][j]前i件取j件差为k时最小的差 
int sum[maxn],sub[maxn]; 
int n,m,p,d;
vector<int> vi;
void prt(int pos)
{
	int v = n;
	int tsum = 0, tsub = 0;
	vi.clear();
	for(int i = m; i > 0; i--)
	{
		while(!pre[v][i][pos]) v--;		// pre[v][i][pos] > 0代表该状态可由前面状态选第v个转移过来 
		int nn = v;
		vi.push_back(nn);				
		pos -= sub[nn];					//到选第v个之前的状态 
		tsum += sum[nn];
		tsub += sub[nn] - 20;			//求出总和差计算总p值d值 
		v--;
	}
	printf("Best jury has value %d for prosecution and value %d for defence: \n", (tsum + tsub)/2,(tsum - tsub)/2);
	for(int i = m-1; i >= 0; i--) printf(" %d",vi[i]);
	printf("\n");
}
int main()
{
	int kase = 1;
	while(scanf("%d%d", &n, &m)&&n)
	{
		for(int i = 1; i <= n; i++)
		{
			scanf("%d%d",&p,&d);
			sum[i] = p + d;
			sub[i] = p - d + 20;			//加入偏移量防止差为负数 
		}
		memset(dp, 0xaa, sizeof(dp));
		memset(pre, 0, sizeof(pre));
		dp[0][0] = 0;
		for(int i = 1; i <= n; i++)
		{
			for(int j = m; j >= 1; j--)
			{
				for(int k = sub[i]; k <= m * 40; k++)
				{
					if(dp[j][k] < dp[j - 1][k - sub[i]] + sum[i])
					{
						dp[j][k] = dp[j - 1][k - sub[i]] + sum[i];
						pre[i][j][k] = i;		//放入第i个达到当前状态,用于后面回溯输出 
					}			
				}
			}
		}
		int pos = 0;
		int tmp = m * 20;
		for(int i = 0; i <= tmp; i++)
		{
			if(dp[m][tmp - i] >= 0)
			{
				if(dp[m][tmp + i] > dp[m][tmp - i]) pos = tmp + i;
				else pos = tmp - i;
				break; 
			}
			if(dp[m][tmp + i] >= 0)
			{
				if(dp[m][tmp - i] > dp[m][tmp + i]) pos = tmp - i;
				else pos = tmp + i;
				break;
			}
		}
		printf("Jury #%d\n",kase++);
		prt(pos);		
	}
 } 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值