ValueError: X.dtype should be np.float32, got float64

背景

在用GBDT系列训练时,报错ValueError: X.dtype should be np.float32, got float64,如下所示。

ValueError                                Traceback (most recent call last)
<ipython-input-14-aa936862d7d7> in <module>()
----> 1 abc.apply(X_train)

~/tmp/dataset/Augboost+FM/AugBoost.py in apply(self, X)
    461             for j 
train: epoch 26, iter:20, loss: 1.2620, lr: 0.0005049999999999998 train: epoch 26, iter:40, loss: 1.2620, lr: 0.0005049999999999998 100%|█████████████████████████████████████████████████████████████| 4/4 [00:09<00:00, 2.26s/it] val epoch: 26, loss: 1.2497 train: epoch 27, iter:0, loss: 1.2728, lr: 0.0004739186928329897 train: epoch 27, iter:20, loss: 1.2634, lr: 0.0004739186928329897 train: epoch 27, iter:40, loss: 1.2622, lr: 0.0004739186928329897 100%|█████████████████████████████████████████████████████████████| 4/4 [00:09<00:00, 2.30s/it] val epoch: 27, loss: 1.2498 train: epoch 28, iter:0, loss: 1.2437, lr: 0.0004429600493856692 train: epoch 28, iter:20, loss: 1.2627, lr: 0.0004429600493856692 train: epoch 28, iter:40, loss: 1.2628, lr: 0.0004429600493856692 100%|█████████████████████████████████████████████████████████████| 4/4 [00:08<00:00, 2.21s/it] val epoch: 28, loss: 1.2497 train: epoch 29, iter:0, loss: 1.2635, lr: 0.0004122462492800661 train: epoch 29, iter:20, loss: 1.2622, lr: 0.0004122462492800661 train: epoch 29, iter:40, loss: 1.2619, lr: 0.0004122462492800661 100%|█████████████████████████████████████████████████████████████| 4/4 [00:08<00:00, 2.23s/it] val epoch: 29, loss: 1.2496 train: epoch 30, iter:0, loss: 1.2675, lr: 0.0003818985058533967 train: epoch 30, iter:20, loss: 1.2610, lr: 0.0003818985058533967 train: epoch 30, iter:40, loss: 1.2625, lr: 0.0003818985058533967 100%|█████████████████████████████████████████████████████████████| 4/4 [00:09<00:00, 2.25s/it] Traceback (most recent call last): File "/root/EGE-UNet-main11/train.py", line 191, in <module> main(config) File "/root/EGE-UNet-main11/train.py", line 147, in main loss = val_one_epoch( ^^^^^^^^^^^^^^ File "/root/EGE-UNet-main11/engine.py", line 90, in val_one_epoch confusion = confusion_matrix(y_true, y_pre) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/sklearn/utils/_param_validation.py", line 216
03-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值