一.先讲一下抽屉原理,其实高中的时候我们都学过,它可扩展为3个:
1.把n + 1个物体放到n个抽屉,至少有一个抽屉里物件不少于2
2.把mn + 1个物体放到n个抽屉,至少有一个抽屉里物件不少于m+1
3.把无穷多个物体放到n个抽屉,至少有一个抽屉里有无穷多
它又衍生出来第二抽屉原理,即:
把nm - 1个物体放到n个抽屉,必有一个抽屉中至多有m - 1个物体
定理就这么简单,但是想用好属实挺难~
例如给你一个数组a和一个数m,问数组中能否选出几个数相加的和能被m整除?
这个题咋一看和抽屉原理也没啥必然联系啊,那就再仔细瞅瞅。。
联系抽屉原理,我们可以知道,当n > m时,必然能选出几个数的和被m整除。
为什么?因为n个数求余m会产生n个余数,至少有两个相同的余数。
n个m以内的余数一定能组成m的倍数
这样,我们只需要判断 n <= m时的情况即可
二. 容斥原理
容斥原理原理是为避免重复计算的一种想法,很简单,同抽屉原理一样,难在活学活用~
简单说一下容斥原理,例如下图,我们知道三个圆各自的面积,问三个圆一共占有的面积是多少?这时候为了避免重复运算,就需要用到容斥原理了:
在此感谢百度百科提供的图片资源~~~
也就是说,3个圆占有的面积是三个圆的面积和 - 红色部分 + G部分
嗯嗯,原理就是这些,还是实战一下吧:
1.例如从m种颜色挑选k种给n盆花染色,要求相邻花颜色不同,问方案数?
从m种颜色挑选k种共有C(m, k)种方案数,而k种颜色给n盆花染色且相邻花颜色不同,这时候我们就可以利用容斥原理了。
种类数应该是:可用k种颜色保证相邻花色不同的方案数 - 可用k - 1种颜色种颜色保证相邻花色不同的方案数+ 可用k - 1种颜色种颜色保证相邻花色不同的方案数…(-1)^(k - 1)✖️可用1种颜色种颜色保证相邻花色不同的方案数
只需要把种类数✖️C(m, k)即为答案
这样就可以简化思考的复杂度了~
2.求区间(a, b)中与n互质的数的个数,例如求区间(a, b)中与12互质的个数
我们可以先筛选出12的全部素因子2, 3,我们只需要求(a, b)的个数 - 素因子2对(a, b)的贡献 - 素因子3对(a, b)的贡献 + 因子(2✖️3)对(a, b)的贡献,即是最终答案。
如果有写的不对或者不全面的地方 可通过主页的联系方式进行指正,谢谢