哈理工院赛-小乐乐和25

题目描述

小乐乐特别喜欢25这个数字,他想把所有的数字都变成25的倍数。
现在小乐乐得到一个数字,想问问你最少用几次操作才可以把这个数字改造成25的倍数。
对于一次操作我们可以把相邻的两位做交换,比如123经过一次操作之后就可以变成213或者132。

输入描述:

多组数据输入

对于每组数据,只有一行输入一个整数n(1 <= n <= 1000000000)。

输出描述:

如果经过最少x次操作后,这个数就变成了25的倍数,那么输出x;

如果这个数无论怎么变化都变不成25的倍数,输出-1.

示例1

输入

2018

输出

-1

示例2

输入

2020

输出

1

说明

经过一次之后变成2200

思路:

​ 要想是25的倍数,只要保证最后最后两位是00或者25或者50或者75即可。然后对这四种情况进行模拟即可

代码:

#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
using namespace std;
int a[15];
int main() {
    int n;
    while(scanf("%d", &n) == 1) {
        int num0 = 0, num2 = 0, num5 = 0, num7 = 0;
        int tot = 0, flag = 0;
        int minn = 0x3f3f3f3f;
        while(n) {
            a[++tot] = n % 10;
            n /= 10;
            if (a[tot] == 0) {
                num0++;
            } else if(a[tot] == 2) {
                num2++;
            } else if(a[tot] == 5) {
                num5++;
            } else if(a[tot] == 7) {
                num7++;
            }
        }
        if (num0 >= 2) {
            flag = 1;
            int aa[15];
            int ls = 0;
            for (int i = 1; i<= tot; i++) {
                aa[i] = a[i];
            }
            for (int i = 1; i <= tot; i++) {
                if(aa[i] == 0) {
                    ls += abs(i - 1);
                    for (int j = i; j > 1; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            for (int i = 2; i <= tot; i++) {
                if(aa[i] == 0) {
                    ls += abs(i - 2);
                    for (int j = i; j > 2; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            minn = min(minn, ls);
        }
        if (num2 >= 1 && num5 >= 1) {
            flag = 1;
            int aa[15];
            int ls = 0;
            for (int i = 1; i<= tot; i++) {
                aa[i] = a[i];
            }
            for (int i = 1; i <= tot; i++) {
                if(aa[i] == 5) {
                    ls += abs(i - 1);
                    for (int j = i; j > 1; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            for (int i = 2; i <= tot; i++) {
                if(aa[i] == 2) {
                    ls += abs(i - 2);
                    for (int j = i; j > 2; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            minn = min(minn, ls);
 
        }
        if(num5 >= 1 && num0 >= 1) {
            flag = 1;
            int aa[15];
            int ls = 0;
            for (int i = 1; i<= tot; i++) {
                aa[i] = a[i];
            }
            for (int i = 1; i <= tot; i++) {
                if(aa[i] == 0) {
                    ls += abs(i - 1);
                    for (int j = i; j > 1; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            for (int i = 2; i <= tot; i++) {
                if(aa[i] == 5) {
                    ls += abs(i - 2);
                    for (int j = i; j > 2; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            minn = min(minn, ls);
        }
        if(num7 >= 1 && num5 >= 1) {
            flag = 1;
            int aa[15];
            int ls = 0;
            for (int i = 1; i<= tot; i++) {
                aa[i] = a[i];
            }
            for (int i = 1; i <= tot; i++) {
                if(aa[i] == 5) {
                    ls += abs(i - 1);
                    for (int j = i; j > 1; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            for (int i = 2; i <= tot; i++) {
                if(aa[i] == 7) {
                    ls += abs(i - 2);
                    for (int j = i; j > 2; j--) {
                        aa[j] = aa[j - 1];
                    }
                    break;
                }
            }
            minn = min(minn, ls);
        }
        if (!flag) {
            printf("-1\n");
        } else {
            printf("%d\n", minn);
        }
    }
    return 0;
}

转载请注明出处!!!

如果有写的不对或者不全面的地方 可通过主页的联系方式进行指正,谢谢

内容概要:本文档详细介绍了Android高级控件的使用方法及其应用场景。首先讲解了下拉列表Spinner,包括其两种表现形式(下拉列表形式对话框形式),并介绍了适配器Adapter的基础概念及其三种主要类型:数组适配器ArrayAdapter、简单适配器SimpleAdapter基本适配器BaseAdapter,重点阐述了它们各自的特点使用步骤。接着,文档对列表视图ListView进行了深入探讨,涉及分隔线样式、按压背景等属性的设置方式。随后,描述了网格视图GridView,详细解释了其拉伸模式的效果及取值。对于翻页视图ViewPager,不仅介绍了基本概念,还展示了翻页标签栏PagerTabStrip的具体应用,特别是用于创建启动引导页。最后,文档介绍了碎片Fragment的概念,强调了其在大屏设备上的优势,以及与ViewPager结合使用的实战案例——记账本应用。 适合人群:有定Android开发基础,希望深入了解并掌握高级控件使用的开发者。 使用场景及目标:①掌握下拉列表、列表视图、网格视图、翻页视图等高级控件的实现细节;②理解适配器的作用及其不同类型的使用场景;③学会使用Fragment优化应用界面布局,提高用户体验;④通过具体案例(如记账本),将所学控件应用于实际开发中。 阅读建议:本文档内容详实,涵盖多种高级控件的理论知识与实践技巧。建议读者在学习过程中结合官方文档或相关资料进行对比研究,同时动手实践,以便更好地理解掌握这些控件的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值