组合数函数

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Ivanzn/article/details/81187709
long long C(int n,int m)
{
    if(m<n-m)    m=n-m;
    long long ans=1;
    for(int i=m+1;i<=n;++i)    ans*=i;
    for(int i=1;i<=n-m;++i)    ans/=i;
    return ans;
}

首先:

C\binom{m}{n}=C\binom{n-m}{n}

第一种:C\binom{m}{n}=\frac{n!}{m!*(n-m)!}=\frac{(m+1)*(m+2)*...*(n-1)*n}{1*2*...*(n-m-1)*(n-m)}

第二种:C\binom{m}{n}=\frac{n!}{m!*(n-m)!}=\frac{(n-m+1)*(n-m+2)*...*(n-1)*n}{1*2*...*(m-1)*m}

#######################################################################

其中第一种分号上下都有(N-M)个数,第二种分号上下有(M)个。

为了减少运算量,要先决定要采用哪一种方法。也就是要比较(N-M)和M的大小。

展开阅读全文

没有更多推荐了,返回首页