题目意思:
有一颗n个节点(编号:1~n)树,每个节点一开始有一个正整数权值ai,还有一个si值,表示从i到根节点经过的节点的权值之和。
现在把所有的ai都删除,也把节点到根节点路径长度为偶数的结点的si删除,现在让你恢复这棵树的节点的权值,使得∑ai最小,如果不存在,那么就输出-1
解题思路:
1.首先要保存这棵树,我用的是邻接表来储存(父子节点之间的关系)
2.首先,如果一个节点是偶数路径的节点而且是一个叶子节点,那么为了使得∑ai最小,那么就让ai=0,si=sp,p是i的父亲节点
3.如果,这是这是一个偶数路径的节点但不是一个叶子节点,那么si = min(sk),k是所有i的子节点的集合,为什么呢?,试想,如果,si>min(sk),又因为min(sk)=ak+si,明显矛盾,这也是用了贪心的思想。