HDU2515

题目意思:给你n*(n-1)/2数字,这些数字是由n个数字选择两个数字相加的集合,问你构成这n*(n-1)/2的原n个数字分别是什么,保证有唯一解,还要从小到大输出。

 

题解思路:
 

知识点:组合数学+暴力枚举.

1.把这n*(n-1)/2个数字从小到大排序分别为K1,K2...KN...K(N-1)*N/2,假设这n个数字分别是A1,A2,...AN

2.从边缘出发,明显满足以下两个方程

        2.1 A1+A2=K1(1)   A1+A3=K2(2)

        2.2但是由于不确定的关系,我们假设 A2+A3=KX(3<=x<=n)(3)

3.从3~n枚举KX,解出上面三个方程,得到解(A1,A2,A3),如果有正整数解,那么从(K1,K2...KN..)中去除A1+A2,A1+A3,A2+A3

4.假设我们已经得到了AK的值,那么要去除(A1+AK,A2+AK...,Ak-1+AK),这时假设剩下的最小的为Ki,显然Ki=A1+AK+1

5.整个的时间复杂度为N^3

 

#include<bits/stdc++.h>
#define register int rint
#define INF 0x3f3f3f3f3f
#define MOD 1000000007
#define mem(a,b) memset(a,b,sizeof(a))
#define PI 3.141592653589793
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int>PII;
const int N=1e4+20;
const int Max=1e4+20;
const double esp=1e-6;
inline int rd() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n,num[N],ans[N],vis[N];
ll total,A;
bool judge(int a,int b,int c)///判断这三个方程有没有整数解
{
    int t1,t2,t3,a1,b1,c1;
    t1=(c-a+b)/2;
    t2=(a+c-b)/2;
    t3=(a-c+b)/2;
    a1=(a-c+b)%2==0&&(a-c+b)>0?1:0;
    b1=(a+c-b)%2==0&&(a+c-b)>0?1:0;
    c1=(c-a+b)%2==0&&(c-a+b)>0?1:0;
    if(a1&b1&c1)
    {
        ans[3]=t1;
        ans[2]=t2;
        ans[1]=t3;
    }
    return a1&b1&c1;
}
bool get(int x)
{
    vis[1]=1,vis[2]=1;vis[x]=1;///k2+k3 已经访问过了

    int now=3,p=3;

    for(int i=4;i<=n;++i)
    {
        int y=2;
        while(vis[p]&&p<=(n-1)*n/2) {++p;}
        if(p>(n-1)*n/2) return 1;

        vis[p]=1;
        ans[i]=num[p]-ans[1];
        for(int j=p+1;j<=(n-1)*n/2;++j)
        {
            if(y==i)  break;
            if(vis[j]==0&&num[j]==ans[y]+ans[i])
            {
                vis[j]=1;
                ++y;
            }
        }
        if(y!=i)    return 0;
    }
    return 1;
}
int main()
{
    while(cin>>n)
    {
        total=0;
        for(int i=1;i<=(n-1)*n/2;++i)
        {
            num[i]=rd();
            total+=num[i];
        }
        sort(num+1,num+1+(n-1)*n/2);
        A=total/(n-1);
        ///cout<<A<<endl;  a1+a2+...+an=A

        for(int i=3;i<=n*(n-1)/2;++i)
        {
            if(judge(num[1],num[2],num[i])==0)  continue;

            mem(vis,0);

            if(get(i))
            {
                for(int i=1;i<=n;++i)
                    cout<<ans[i]<<endl;
                break;
            }
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值