给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
进阶:
尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?
题解
方法1:使用额外数组
思路:创建一个新的数组来存放轮转后的元素。对于原数组中的每个元素,计算它在新数组中的位置,并将其复制到新位置上。这种方法的关键在于计算新位置时使用模运算(i + k) % n
来确保索引不会超出数组的界限。
实现:
public void rotate(int[] nums, int k) {
int n = nums.length;
int[] newArr = new int[n];
for (int i = 0; i < n; i++) {
newArr[(i + k) % n] = nums[i];
}
System.arraycopy(newArr, 0, nums, 0, n);
}
这种方法的时间复杂度为O(n),空间复杂度为O(n),因为需要一个与原数组同样大小的额外数组来存放结果。
方法2:使用反转
思路:这种方法不需要使用额外的空间。首先将整个数组反转,这样末尾的k
个元素就被移动到了数组的前面。然后,分别反转数组的前k
个元素和剩下的元素,以恢复这些元素的原始顺序。
实现:
public void rotate(int[] nums, int k) {
k %= nums.length;
reverse(nums, 0, nums.length - 1);
reverse(nums, 0, k - 1);
reverse(nums, k, nums.length - 1);
}
private void reverse(int[] nums, int start, int end) {
while (start < end) {
int temp = nums[start];
nums[start] = nums[end];
nums[end] = temp;
start++;
end--;
}
}
这种方法的时间复杂度为O(n),空间复杂度为O(1)。通过三次反转操作,实现了数组的轮转而不需要额外的存储空间。
方法3:环状替换
思路:通过计算每个元素的最终位置,并将其放到正确的位置上,同时保持空间复杂度为O(1)。这个方法避免了使用额外的数组空间,通过一次遍历完成所有元素的移动。
实现:
public void rotate(int[] nums, int k) {
k %= nums.length;
int count = 0;
for (int start = 0; count < nums.length; start++) {
int current = start;
int prev = nums[start];
do {
int next = (current + k) % nums.length;
int temp = nums[next];
nums[next] = prev;
prev = temp;
current = next;
count++;
} while (start != current);
}
}
这种方法的时间复杂度为O(n),空间复杂度为O(1)。它通过环状替换的方式,一次遍历就完成了所有元素的正确移动,无需额外空间。
总结
这三种方法各有优缺点,使用额外数组的方法最直观简单,但空间复杂度较高;使用反转的方法空间复杂度最优,实现也相对简单;环状替换方法同样保持了O(1)的空间复杂度,但实现相对复杂。选择哪种方法取决于对时间复杂度和空间复杂度的具体要求。