Python爬虫实战(一) 用Python爬取百度百科

1、爬取百度百科

百度百科是一个静态网页,爬取起来很简单,而且请求参数可以直接放在 URL 里面,例如:

地址 https://baike.baidu.com/item/网络爬虫 对应的就是 网络爬虫 的百度百科页面

地址 https://baike.baidu.com/item/计算机 对应的就是 计算机 的百度百科页面

在这里插入图片描述
可以说是十分方便,也不多说,直接放代码,有不明白的地方可以看看注释:

import urllib.request
import urllib.parse
from lxml import etree

def query(content):
    # 请求地址
    url = 'https://baike.baidu.com/item/' + urllib.parse.quote(content)
    # 请求头部
    headers = { 
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' 
    }
    # 利用请求地址和请求头部构造请求对象
    req = urllib.request.Request(url=url, headers=headers, method='GET')
    # 发送请求,获得响应
    response = urllib.request.urlopen(req)
    # 读取响应,获得文本
    text = response.read().decode('utf-8')
    # 构造 _Element 对象
    html = etree.HTML(text)
    # 使用 xpath 匹配数据,得到匹配字符串列表
    sen_list = html.xpath('//div[contains(@class,"lemma-summary") or contains(@class,"lemmaWgt-lemmaSummary")]//text()') 
    # 过滤数据,去掉空白
    sen_list_after_filter = [item.strip('\n') for item in sen_list]
    # 将字符串列表连成字符串并返回
    return ''.join(sen_list_after_filter)

if __name__ == '__main__':
    while (True):
        content = input('查询词语:')
        result = query(content)
        print("查询结果:%s" % result)

效果演示:

在这里插入图片描述

2、爬取维基百科

上面的确是可以解决一些问题,但是如果用户查询为英文怎么办?我们知道,百度百科一般极少收录英文词条

类似的,很容易想到爬取维基百科,思路也和爬取百度百科一样,只需处理一下请求地址和返回结果就好

在这里插入图片描述
下面也是直接放上代码,有不明白的地方可以看看注释:

from lxml import etree
import urllib.request
import urllib.parse

def query(content):
    # 请求地址
    url = 'https://en.wikipedia.org/wiki/' + content
    # 请求头部
    headers = { 
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' 
    }
    # 利用请求地址和请求头部构造请求对象
    req = urllib.request.Request(url=url, headers=headers, method='GET')
    # 发送请求,获得响应
    response = urllib.request.urlopen(req)
    # 读取响应,获得文本
    text = response.read().decode('utf-8')
    # 构造 _Element 对象
    html = etree.HTML(text)
    # 使用 xpath 匹配数据,得到 <div class="mw-parser-output"> 下所有的子节点对象
    obj_list = html.xpath('//div[@class="mw-parser-output"]/*')
    # 在所有的子节点对象中获取有用的 <p> 节点对象
    for i in range(0,len(obj_list)):
        if 'p' == obj_list[i].tag:
            start = i
            break
    for i in range(start,len(obj_list)):
        if 'p' != obj_list[i].tag:
            end = i
            break
    p_list = obj_list[start:end]
    # 使用 xpath 匹配数据,得到 <p> 下所有的文本节点对象
    sen_list_list = [obj.xpath('.//text()') for obj in p_list]
    # 将文本节点对象转化为字符串列表
    sen_list = [sen.encode('utf-8').decode() for sen_list in sen_list_list for sen in sen_list]
    # 过滤数据,去掉空白
    sen_list_after_filter = [item.strip('\n') for item in sen_list]
    # 将字符串列表连成字符串并返回
    return ''.join(sen_list_after_filter)

if __name__ == '__main__':
    while (True):
        content = input('Word: ')
        result = query(content)
        print("Result: %s" % result)

下面是效果演示:

在这里插入图片描述
OK,大功告成!

注意:本项目代码仅作学习交流使用!!!

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

Python资料、技术、课程、解答、咨询也可以直接点击下面名片,添加官方客服斯琪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值