斐波那契数列

斐波纳契数列(Fibonacci Sequence),又称黄金分割数列。

指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。

在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用。

斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci)。

与黄金分割的关系

有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,后一项与前一项的比值的小数部分越来越逼近黄金分割0.618. 1÷1=1,2÷1=2,3÷2=1.5,5÷3=1.666...,8÷5=1.6,…………,89÷55=1.6181818…,…………233÷144=1.618055…75025÷46368=1.6180339889…...

越到后面,这些比值越接近黄金比。

证明:

a[n+2]=a[n+1]+a[n]。

两边同时除以a[n+1]得到:

a[n+2]/a[n+1]=1+a[n]/a[n+1]。

若a[n+1]/a[n]的极限存在,设其极限为x,

则lim[n->;∞](a[n+2]/a[n+1])=lim[n->;∞](a[n+1]/a[n])=x。

所以x=1+1/x。

即x²=x+1。

所以极限是黄金分割比..


如果你看到有这样一个题目:

某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?

其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

在杨辉三角中隐藏着斐波那契数列


斐波那契数列的整除性与素数生成性

每3个数有且只有一个被2整除,

每4个数有且只有一个被3整除,

每5个数有且只有一个被5整除,

每6个数有且只有一个被8整除,

每7个数有且只有一个被13整除,

每8个数有且只有一个被21整除,

每9个数有且只有一个被34整除, 

.......

我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657(第19位不是)

斐波那契数列的素数无限多吗?

斐波那契数列的个位数:一个60步的循环

11235,83145,94370,77415,61785.38190,99875,27965,16730,33695,49325,72910…

斐波那契数列中是否存在无穷多个素数?[维基百科]

在斐波那契数列中,有素数:

2,3,5,13,89,233,1597,28657,514229,433494437,2971215073,99194853094755497,1066340417491710595814572169,19134702400093278081449423917……

目前已知最大素数是第81839个斐波那契数,一共有17103位数。

相关的数学问题

1.排列组合

有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法?

这就是一个斐波那契数列:

登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……

1,2,3,5,8,13……所以,登上十级,有89种走法。

类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种?

答案是(1/√5)*{[(1+√5)/2]^(10+2) - [(1-√5)/2]^(10+2)}=144种。

2.数列中相邻两项的前项比后项的极限

当n趋于无穷大时,F(n)/F(n+1)的极限是多少?

这个可由它的通项公式直接得到,极限是(-1+√5)/2,这个就是黄金分割的数值,也是代表大自然的和谐的一个数字。

3.求递推数列a(1)=1,a(n+1)=1+1/a(n)的通项公式

由数学归纳法可以得到:a(n)=F(n+1)/F(n),将斐波那契数列的通项式代入,化简就得结果。

4.兔子繁殖问题(关于斐波那契数列的别名)

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?

我们不妨拿新出生的一对小兔子分析一下:

第一个月小兔子没有繁殖能力,所以还是一对

两个月后,生下一对小兔民数共有两对

三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对

------ 依次类推可以列出下表:

经过月数

0

1

2

3

4

5

6

7

8

9

10

11

12

幼仔对数

1

0

1

1

2

3

5

8

13

21

34

55

89

成兔对数

0

1

1

2

3

5

8

13

21

34

55

89

144

总体对数

1

1

2

3

5

8

13

21

34

55

89

144

233

幼仔对数=前月成兔对数

成兔对数=前月成兔对数+前月幼仔对数

总体对数=本月成兔对数+本月幼仔对数

可以看出幼仔对数、成兔对数、总体对数都构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利中世纪数学家斐波那契在<;算盘全书>;中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)

    package com.tudou.t1;  
     
    import java.math.BigInteger;  
    import java.util.Scanner;  
     
    /**  
     * 斐波那契数列 1,2,3,5,8,13,21....[]  
     *   
     * @author lz  
     *   
     */ 
    public class Fibonacci {  
        public static void main(String[] args) {  
            fib();//常规算法  
            System.out.println(compute2(5));//计算第n个斐波那契数列的数  
            fibHign();// Java语言程序(高精度,约一秒钟计算第20000个数值)  
        }  
     
        private static void fib() {  
            int x = 1, y = 1;  
            System.out.println(x);  
            for (int i = 1; i <= 5; i++) {  
                System.out.println(y);  
                y = x + y;  
                x = y - x;  
            }  
        }  
     
        // n为第n个斐波那契数列的数  
        public static BigInteger compute2(int n) {  
            if (n == 1 || n == 2) {  
                return BigInteger.ONE;  
            }  
            BigInteger num1 = BigInteger.ONE;  
            BigInteger num2 = BigInteger.ONE;  
            BigInteger result = BigInteger.ZERO;  
            for (int i = 2; i < n; i++) {  
                result = num1.add(num2);  
                num2 = num1;  
                num1 = result;  
            }  
            return result;  
        }  
     
        // Java语言程序(高精度,约一秒钟计算第20000个数值)  
        private static void fibHign() {  
            Scanner s = new Scanner(System.in);  
            System.out.print("请输入一个整数:");  
            int n = s.nextInt();  
            do {  
                cul(n);  
                n = s.nextInt();  
            } while (n > 0);// 当n<=0时终止  
        }  
     
        private static void cul(int n) {  
            BigIntT b = new BigIntT();  
            BigIntT a = new BigIntT();  
            b.formatBigInt("1");  
            a.formatBigInt("2");  
            if (n == 1 || n == 2) {  
                System.out.println(1);  
                return;  
            }  
            int i = 3;  
            for (; i <= n; i++) {  
                if (i % 2 > 0)  
                    b.add(a);  
                else 
                    a.add(b);  
            }  
            BigIntT t = null;  
            if (i % 2 > 0)  
                t = b;  
            else 
                t = a;  
            for (int j = t.getPos(); j < 100000; j++)  
                System.out.print(t.getBase(j));  
            System.out.println();  
        }  
    }  
     
    class BigIntT {  
        int max = 100000;  
        private byte[] base = new byte[max];  
        private int pos = max;  
     
        public void formatBigInt(String arr) {  
            int l = arr.length();  
            if (l == 0)  
                return;  
            int tmp = l - 1;  
            for (int i = max - 1; i >= max - l; i--) {  
                base[i] = (byte) (arr.charAt(tmp--) - '0');  
                pos--;  
            }  
        }  
     
        public void add(BigIntT right) {  
            int bigger = this.getPos() > right.getPos() ? right.getPos() : this 
                    .getPos();  
            pos = bigger;  
            for (int i = max - 1; i >= pos - 2; i--) {  
                int t = this.base[i] + right.getBase(i);  
                if (t >= 10) {  
                    this.base[i] = (byte) (t % 10);  
                    this.base[i - 1] += t / 10;  
                    if (i - 1 < pos)  
                        pos = i - 1;  
                } else {  
                    this.base[i] = (byte) t;  
                }  
            }  
        }  
     
        public int getPos() {  
            return pos;  
        }  
     
        public byte getBase(int index) {  
            return base[index];  
        }  
    }  

控制台输出结果为:

1 
1 
2 
3 
5 
8 
5

请输入一个整数:500

139423224561697880139724382870407283950070256587697307264108962948325571622863290

691557658876222521294125



  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值