The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens’ placement, where ‘Q’ and ‘.’ both indicate a queen and an empty space respectively.
Example:
Input: 4
Output: [
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
Solution
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> vvs;
vector<string> vs(n, std::string(n, '.'));
solveNQueensHelper(vvs, vs, 0);
return vvs;
}
private:
void solveNQueensHelper(vector<vector<string>> &vvs, vector<string> &vs, int row) {
if (row != vs.size()) {
for (int i = 0; i < vs.size(); ++i) {
if (valid(vs, row, i)) {
vs[row][i] = 'Q';
solveNQueensHelper(vvs, vs, row + 1);
vs[row][i] = '.';
}
}
} else {
vvs.push_back(vs);
}
}
int valid(vector<string> &vs, int row, int col) {
for (int i = 0; i < vs.size(); ++i) {
if (vs[i][col] == 'Q') {
return 0;
}
}
for (int i = row - 1, j = col - 1; i > -1 && j > -1; --i, --j) {
if (vs[i][j] == 'Q') {
return 0;
}
}
for (int i = row - 1, j = col + 1; i > -1 && j < vs.size(); --i, ++j) {
if (vs[i][j] == 'Q') {
return 0;
}
}
return 1;
}
};