原题链接:Problem - C2 - Codeforces
题意:给长度为n的数组,给出q个询问,每次询问给你一个区间[l,r],求出一段区间的值sum[li,ri] - xor[li,ri]最大且ri - li+ 1最小,输出li, ri。 ([li,ri]在区间[l,r]的范围内)
思路:
首先,异或运算相当于不进位的加法,而sum[l,r]正常的进位加法之和,所以当sum[li,ri]-xor[li,ri]的范围变大时,sum[li,ri]的增加量肯定是大于等于xor[li,ri]的,因此我们得出在[l,r]的范围内sum[li,ri] - xor[li,ri]的最大值就是sum[l,r] - xor[l,r]。
然后我们剩下的任务就是找到sum[li,ri]-xor[li,ri]等于sum[l,r] - xor[l,r]的使得r-l最小的l和r的值了。为了找到这个值,我们可以枚举在[l,r]区间的左端点li,二分答案求得使得ri-li最小的ri的值,将这个值最小值记录保存,最后输出它。
当然,对于C2只有这些还不够,以上只是C1的做法。
因为多了q次的查询,所以将上述做法的答案交到C2会T,那么我们该如何优化时间复杂度呢?
观察题目,我们可以发现两个优化点:
1.数组中的0对于答案是没有贡献的,我们可以忽略一个选择的区间中开头的0以及末尾的0。
2.若要缩小区间并且使得sum[l,r] - xor[l,r]不变,且选择区间上的值不为0,那么我们一定只能选择有限个,因为若改变区间并且sum[l,r] - xor[l,r]不变,则去掉的区间必须满足sum[li,ri]=xor[li,ri],而若想要两个数进位相加结果与不进位相加的结果相同,它们两两对应的任何一个二进制数位上,都不能同时为1,否则sum[li,ri]与xor[li,ri]就不会相同了。而一个正整数的二进制的数位上至少有一个1,所以对于只含正整数的区间,我们最多减少长度为31的区间,因为int类型占32位。
既然找到了优化点,接下来我们需要做的就是用代码实现优化了。
对于第一个优化点,我们可以定义一个数组,存储每个数下一个非零数的位置,这样在枚举左端点时,我们就能忽略掉拥有前导0的区间了。
对于第二个优化点,我们可以定义一个计数器,来计算去掉了几个非0端点,当去掉的非零端点到达一定值时,我们就可以停止二分查找了,因为之后的查找所去掉的端点都会使sum[l,r] - xor[l,r]减小。
#define _CRT_SECURE_NO_WARNINGS 1
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<math.h>
#define FOR(a,b) for(int i=a;i<=b;i++)
#define ROF(a,b) for(int i=a;i>=b;i--)
#define FORj(a,b) for(int j=a;j<=b;j++)
#define ROFj(a,b) for(int j=a;j>=b;j--)
#define FORk(a,b) for(int k=a;k<=b;k++)
#define ROFk(a,b) for(int k=a;k>=b;k--)
#define mem(i,a) memset(i,a,sizeof(i))
#define ll long long
#define inf 0x3f3f3f3f
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define int long long
#define yes cout<<"YES"<<endl
#define no cout<<"NO"<<endl
#define pi acos(-1.0)
#define endl '\n'
using namespace std;
const int maxn = 5e6 + 5;
int a[maxn];
int sum[maxn];
int x[maxn];
int nx[maxn];
void solve() {
int n, q, lx, rx, cnt = 0;
cin >> n >> q;
FOR(1, n) {
cin >> a[i];
sum[i] = sum[i - 1] + a[i];
x[i] = x[i - 1] ^ a[i];
}
nx[n] = n + 1;
ROF(n - 1, 1) {
if (a[i + 1])nx[i] = i + 1;
else nx[i] = nx[i + 1];
}
// for(int i=1; i<=n; i++)cout<<nx[i]<<" ";
while (q--) {
cin >> lx >> rx;
int li = lx, ri = rx, lk = lx, kk = 31;
int k2 = x[rx] ^ x[lx - 1];
int k = sum[rx] - sum[lx - 1] - k2;
while (lk <= rx) {
int l = lk, r = rx;
if (sum[rx] - sum[lk - 1] - (x[rx] ^ x[lk - 1]) < k) break;
while (l < r) {
int mid = (l + r) >> 1;
if (sum[mid] - sum[lk - 1] - (x[mid] ^ x[lk - 1]) == k) {
r = mid;
}
else l = mid + 1;
}
if (r - lk < ri - li && sum[r] - sum[lk - 1] - (x[r] ^ x[lk - 1]) == k) {
ri = l;
li = lk;
}
if (a[lk])kk--;
if (!kk)break;
lk = nx[lk];
}
cout << li << " " << ri << endl;
}
}
signed main() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(0);
int _;
cin >> _;
while (_--)
solve();
return 0;
}