大数据生态系统 修仙之道 Hadoop Blog

本文详细介绍了大数据生态系统中的核心组件Hadoop,包括Hadoop的起源、发展、主要发行版以及其4高优势。文章深入讲解了Hadoop的运行模式、HDFS和MapReduce的架构、集群搭建过程以及Hadoop的生态环境。此外,还讨论了Hadoop在大数据存储、处理和分析中的应用场景和关键特性。最后,文章涵盖了Hadoop的编译源码、HDFS的概述以及未来可能涉及的分布式运行模式。" 115560183,10780830,图像处理:量化技术解析,"['图像处理', '数字图像', '灰度图像', '量化技术', '图像质量']

大数据生态系统 修仙之道 Hadoop Blog

@(2019-01-22)[Docs Language:简体中文 & English|Programing Language:Hadoop|Website:www.geekparkhub.com|OpenSource|GeekDeveloper:JEEP-711|Github:github.com/geekparkhub|Gitee:gitee.com/geekparkhub]

? Hadoop Technology 修仙之道 炼精化气 ?

Alt text

  • 极客实验室是极客国际公园旗下为未来而构建的极客社区;
  • 我们正在构建一个活跃的小众社区,汇聚众多优秀开发者与设计师;
  • 关注极具创新精神的前沿技术&分享交流&项目合作机会等互联网行业服务;
  • Open开放 · Creation创想 | OpenSource开放成就梦想 GeekParkHub共建前所未见!
  • Future Vision : Establishment of the Geek Foundation;
  • GeekParkHub GithubHome:https://github.com/geekparkhub
  • GeekParkHub GiteeHome:https://gitee.com/geekparkhub
  • 欢迎贡献各领域开源野生Blog&笔记&文章&片段&分享&创想&OpenSource Project&Code&Code Review
  • ??????????? issues: geekparkhub.github.io/issues ???????????

文章目录

1. 大数据 简介

大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统,大数据由巨型数据集组成,这些数据集大小常超出人类在可接受时间下的收集、庋用、管理和处理能力,大数据的大小经常改变,截至2012年,单一数据集的大小从数太字节(TB)十兆亿字节(PB)等. —— MBA智库百科

2. 大数据 概论

大数据 概念

**大数据(BigData)是指无法在一定时间范围**内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产.

大数据主要解决:海量数据的**存储和海量数据的分析计算**问题.

数据存储单位: bit / Byte / KB / MB / GB / TB / PB / EB / ZB / YB / BB / NB / DB

1 Byte = 8bit
1 KB = 1024Byte
1 MB = 1024KB
1 GB = 1024MB
1 TB = 1024GB
1 PB = 1024TB
1 EB = 1024PB
1 ZB = 1024EB
1 YB = 1024ZB
1 BB = 1024YB
1 NB = 1024BB
1 DB = 1024NB

大数据 特点(4V)

1.Volume (大量)

截止目前,人类生产的所有印刷材料的数据量是200PB(1PB=1024TB),而历史上全人类总共说过的话的数量大约是5EB(1EB=1024PB),当前典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经近EB量级.

2.Velocity (高速)

这是大数据区分于传统数据挖掘的最显著特征,根据IDC的"数字宇宙"报告,预计2020年,全球数据使用量将达到35.2ZB(1 ZB = 1024EB),在如此海量的数据面前,处理数据的效率就是企业的生命.

3.Variety (多样)

这种类型的多样性也让数据被分为结构化数据和非结构化数据,相对于以往便于存储的以数据库&文本为主的结构化数据,非结构化数据越来越多,包括网络日志,音频,视频,图片,地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求.

4.Value (低价值密度)

价值密度的高低与数据总量的大小成反比,如何快速对有价值数据"提纯",成为目前大数据背景下待解决的难题.

大数据 应用场景

物流仓储:大数据分析系统助力商家精细化运营,提升销量,节约成本.

零售:分析用户消费习惯,为用户购买商品提供方便,从而提升商品售量,经典故事案例 -《纸尿布+啤酒》.

旅游:深度结合大数据能力与旅游行业需求,共建旅游产业智慧管理,智慧服务,智慧营销的未来.

商品广告推荐:为用户推荐可能喜欢的商品.

保险:海量数据挖掘及风险预测,助力保险行业精准营销,提升精细化定价能力.

金融:多维度体现用户特征,帮助金融机构推荐优质客户,防范欺诈风险.

房产:大数据全面助力房地产行业,打造精准投策与营销,挑选出更合适的地域.

大数据部门业务流程分析

产品人员 数据部门 数据可视化/报 提出需求(统计总用户数,日活跃用户数,回流用户数等) 搭建数据平台,分析数据指标 产品人员 数据部门 数据可视化/报

大数据部门组织结构(重点)

大数据部门组织结构

所在组 所在组工作职责
平台组 Hadoop,Flume,Kafka,Hbase,Spark等框架平台搭建,集群性能监控,集群性能调优
数据仓库组 ETL工程师-数据清洗,Hive工程师-数据分析,数据仓库建模
数据挖掘组 算法工程师 推荐系统工程师 用户画像工程师
数据报表开发组 JAVAEE工程师

3. 探讨Hadoop框架 大数据生态

Hadoop 简介

Apache Hadoop是一款支持数据密集型分布式应用程序并以Apache 2.0许可协议发布的开源软件框架,它支持在商品硬件构建的大型集群上运行的应用程序,Hadoop是根据谷歌公司发表的MapReduce和Google文件系统的论文自行实现而成。所有的Hadoop模块都有一个基本假设,即硬件故障是常见情况,应该由框架自动处理。

Hadoop框架透明地为应用提供可靠性和数据移动,它实现了名为MapReduce的编程范式:应用程序被分割成许多小部分,而每个部分都能在集群中的任意节点上运行或重新运行。此外,Hadoop还提供了分布式文件系统,用以存储所有计算节点的数据,这为整个集群带来了非常高的带宽。MapReduce和分布式文件系统的设计,使得整个框架能够自动处理节点故障,它使应用程序与成千上万的独立计算的计算机和PB级的数据连接起来,现在普遍认为整个Apache Hadoop"平台"包括Hadoop内核、MapReduce、Hadoop分布式文件系统(HDFS)以及一些相关项目,有Apache Hive和Apache HBase等等. —— 维基百科

Hadoop 是什么

Hadoop是由Apache基金会所开发的分布式系统基础架构.

Hadoop主要解决:海量**数据的存储和海量数据的分析计算**问题

广义上来讲,Hadoop通常是指一个更广泛的概念 — Hadoop生态圈

Hadoop 发展历史

1.Hadoop创始人:Doug Cutting

Lucene框架是Doug Cutting开创的开源软件,使用java编程语言开发,实现与Google类似的全文搜索功能,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎.

2.2001年年底Lucene成为Apache基金会的一个子项目.

3.对于海量数据的场景,Lucene面对与Google同样的困难,存储数据困难,检索速度慢.

4.学习和模仿Google解决这些问题的办法:(Lucene的升级版) Nutch.

5.可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)

GFS —> HDFS
Map-MapReduce —> MR
BigTable —> Hbase

6.2003至2004年,Google公开了部分GFS和MapReduce思想细节,以此为基础Doug Cutting等开发者用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升.

7.2005年Hadoop作为Lucene的子项目,Nutch的一部分正式引入Apache基金会.

8.2006年3月份,Map-Reduce和NDFS(Nutch Distributed File System),分别被纳入称为Hadoop的项目中.

9.Hadoop名字来源于Doug Cutting孩子的玩具大象.

10.Hadoop就此诞生并迅速发展,标志着大数据时代来临.

Hadoop 三大发行版本

Hadoop 三大发行版本 Apache | Cloudera | Hortonworks

Apache Hadoop

Apache版本最最原始(最基础)版本,对于入门学习最佳.

官网地址 : http://hadoop.apache.org/releases.html

下载地址 : https://archive.apache.org/dist/hadoop/common/

Cloudera Hadoop

Cloudera在大型互联网企业中应用场景较多.

官网地址 : https://www.cloudera.com/downloads/cdh/5-10-0.html

下载地址 : http://archive.cloudera.com/cdh5/cdh/5/

2008年成立的Cloudera是最早将Hadoop商用公司,为合作伙伴提供Hadoop的商业解决方案,主要是包括支持,咨询服务,培训.

2009年Hadoop创始人Doug Cutting也加盟了Cloudera公司,Cloudera产品主要为CDH,Cloudera Manager | Cloudera Support.

CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强.

Cloudera Manager是集群的软件分发及管理监控平台,可以再几个小时内部部署好一个Hadoop集群,并对集群节点及服务
进行实时监控,Cloudera Support即是对Hadoop的技术支持.

Cloudera的标价为每年每个节点4000美元,Cloudera开发并贡献了可实时处理大数据的Impala项目.

Hortonworks Hadoop

Hortonworks文档较好.

官网地址 : https://hortonworks.com/products/data-center/hdp/

下载地址 : https://hortonworks.com/downloads/#data-platform

2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建.

公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,并贡献了80%的Hadoop代码.

雅虎工程副总裁,雅虎Hadoop开发团队负责人Eric Baldeschwieler出任Hortonworks的首席执行官.

Hortonworks主打产品是Hortonworks Data Platform(HDP),也同样是100%开源产品,HDP除常见的项目外还包括Ambari,一款开源的安装和管理系统.

HCatalog 一个元数据管理系统,HCatalog现已集成到Facebook开源的Hive中,Hortonworks的Stinger开创性的极大的优化了Hive项目,Hortonworks为入门提供一个非常好的易于使用的沙盒.

Hortonworks开发了很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Window Server和Windowns Azure在内的Microsoft Windows平台上本地运行,定价以集群为基础,每10个节点每年为12500美元.

Hadoop 优势 (4高)

1.高可靠性

Hadoop底层维护多个数据副本,所以即使Haoop某个计算元素或存储出现故障,也不会导致数据的丢失.

2.高扩展性

在集群间分配任务数据,可方便的扩展数以千计的节点.

3.高效性

在MapReduce的思想下,Hadoop是并行工作,以加快任务处理速度.

4.高容错性

能够自动将失败的任务重新分配.

Hadoop 组成(面试重点)

Hadoop1.x与Hadoop2.x 区别

Hadoop1.x组成 : MapReduce(计算+资源调度) | HDFS(数据存储) | Common(辅助工具)

Hadoop2.x组成 : MapReduce(计算) | Yarn(资源调度) | HDFS(数据存储) | Common(辅助工具)

在Hadoop1.x时代,Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,所以耦合性较大.

在Hadoop2.x时代,增加了Yarn,Yarn只负责资源的调度,MapReduce只负责运算.

HDFS 架构概述

HDFS (Hadoop Distributed File System) | 三大组件 nn / dn / 2nn

1.NameNode(nn) : 存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间,副本数,文件权限,),以及每个文件的块列表和块所在的DataNode等.

2.DataNode(dn) : 在本地文件系统存储文件块数据,以及块数据的校验和.

3.Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照.

YARN 架构概述

四大组件 | RM / NM / AM / Container
enter image description here

MapReduce 架构概述

两大阶段 | Map / Reduce

MapReduce将计算过程分为两个阶段:Map 和 Reduce

Map阶段并行处理输入数据 | Reduce阶段对Map结果进行汇总
enter image description here

大数据技术 生态体系

enter image description here

推荐 系统框架图

enter image description here

4. Hadoop 运行环境搭建(开发重点)

虚拟机环境 准备

1.克隆虚拟机

enter image description here

2.修改克隆虚拟机的静态IP

使用root用户登录
vim /etc/udev/rules.d/70-persistent-net.rules

源代码

# This file was automatically generated by the /lib/udev/write_net_rules
# program, run by the persistent-net-generator.rules rules file.
#
# You can modify it, as long as you keep each rule on a single
# line, and change only the value of the NAME= key.

# PCI device 0x8086:0x100f (e1000)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{
   
   address}=="00:0c:29:a3:d8:a7", ATTR{
   
   type}=="1", KERNEL=="eth*", NAME="eth0"

# PCI device 0x8086:0x100f (e1000)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{
   
   address}=="00:0c:29:67:b3:77", ATTR{
   
   type}=="1", KERNEL=="eth*", NAME="eth1"

将NAME="eth1"更改为NAME=“eth0”,并复制00:0c:29:67:b3:77地址

# PCI device 0x8086:0x100f (e1000)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{
   
   address}=="00:0c:29:67:b3:77", ATTR{
   
   type}=="1", KERNEL=="eth*", NAME="eth0"

更改完毕,:wq保存退出

修改网络配置
粘贴上一步地址,修改HWADDR属性
vim /etc/sysconfig/network-scripts/ifcfg-eth0

DEVICE=eth0
HWADDR=00:0c:29:67:b3:77
TYPE=Ethernet
UUID=b75136b3-4a81-41b5-9ebd-bfc1831d0df7
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=static

IPADDR=192.168.177.131
GATEWAY=192.168.177.2
DNS1=192.168.177.2

更改完毕,:wq保存退出

3.修改主机名

vim /etc/sysconfig/network

NETWORKING=yes
HOSTNAME=corehub-004

更改完毕,:wq保存退出

4.关闭防火墙

暂时性关闭防火墙:service iptables stop

5.创建用户

useradd username

6.配置用户具有root权限

vim /etc/sudoers
enter image description here
更改完毕,:wq!保存退出

7.在/opt目录下创建文件夹

1.创建software,module文件夹
software 用于日后存储的程序安装包
module 用于日后存储解析后的程序jar包

sudo mkdir software
sudo mkdir module
[geek-developer@corehub-001 ~]$ cd /opt/
[geek-developer@corehub-001 opt]$ ll
total 8
drwxr-xr-x. 6 root root 4096 Jan 17 23:35 devtool
drwxr-xr-x. 2 root root 4096 Oct  4  2017 rh
[geek-developer@corehub-001 opt]$ sudo mkdir software
[sudo] password for geek-developer: 
[geek-developer@corehub-001 opt]$ sudo mkdir module
[geek-developer@corehub-001 opt]$ ll
total 16
drwxr-xr-x. 6 root root 4096 Jan 17 23:35 devtool
drwxr-xr-x. 2 root root 4096 Jan 24 20:12 module
drwxr-xr-x. 2 root root 4096 Oct  4  2017 rh
drwxr-xr-x. 2 root root 4096 Jan 24 20:11 software
[geek-developer@corehub-001 opt]$ 

2.修改software,module文件夹的所有者

[geek-developer@corehub-001 opt]# chown geek-developer:geek-developer software/ module/
[geek-developer@corehub-001 opt]# ll
total 16
drwxr-xr-x. 6 root           root           4096 Jan 17 23:35 devtool
drwxr-xr-x. 2 geek-developer geek-developer 4096 Jan 24 20:12 module
drwxr-xr-x. 2 root           root           4096 Oct  4  2017 rh
drwxr-xr-x. 2 geek-developer geek-developer 4096 Jan 24 20:11 software
[geek-developer@corehub-001 opt]# 

安装 Hadoop

在安装Hadoop前提是需要先安装JAVA并配置环境变量即可

Apache Hadoop官方地址 : https://archive.apache.org/dist/hadoop/common/hadoop-2.7.2/

通过远程工具,将hadoop-2.7.2.tar.gz传输到/op/tsoftware/目录下

将hadoop-2.7.2.tar.gz解压/opt/module/目录下

tar -zxvf hadoop-2.7.2.tar.gz -C /opt/module

将解压完成hadoop-2.7.2重命名为hadoop

[root@corehub-001 software]# cd ..
[root@corehub-001 opt]# cd module/
[root@corehub-001 module]# ll
total 4
drwxr-xr-x. 9 10011 10011 4096 Jan 26  2016 hadoop-2.7.2
[root@corehub-001 module]# mv hadoop-2.7.2 hadoop
[root@corehub-001 module]# ll
total 4
drwxr-xr-x. 9 10011 10011 4096 Jan 26  2016 hadoop
[root@corehub-001 module]# 

配置hadoop环境变量

[root@corehub-001 module]# cd hadoop/
[root@corehub-001 hadoop]# pwd
/opt/module/hadoop
[root@corehub-001 hadoop]#
[root@corehub-001 geek-developer]# vim /etc/profile
##HADOOP_HOME
export HADOOP_HOME=/opt/module/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

完成环境变量,:wq保存退出
source /etc/profile 更新配置文件指令

[root@corehub-001 geek-developer]# source /etc/profile
[root@corehub-001 geek-developer]# hadoop
Usage: hadoop [--config confdir] [COMMAND | CLASSNAME]
  CLASSNAME            run the class named CLASSNAME
 or
  where COMMAND is one of:
  fs                   run a generic filesystem user client
  version              print the version
  jar <jar>            run a jar file
                       note: please use "yarn jar" to launch
                             YARN applications, not this command.
  checknative [-a|-h]  check native hadoop and compression libraries availability
  distcp <srcurl> <desturl> copy file or directories recursively
  archive -archiveName NAME -p <parent path> <src>* <dest> create a hadoop archive
  classpath            prints the class path needed to get the
  credential           interact with credential providers
                       Hadoop jar and the required libraries
  daemonlog            get/set the log level for each daemon
  trace                view and modify Hadoop tracing settings

Most commands print help when invoked w/o parameters.
[root@corehub-001 geek-developer]# 

Hadoop 目录结构

bin目录 : Hadoop服务脚本.

etc目录 : Hadoop的配置文件目录,存放Haoop配置文件.

lib目录 : 存放Hadoop本地库,(对数据进行压缩解压功能).

sbin目录 : 存放启动或停止Hadoop相关服务脚本.

share目录 : 存放Hadoop依赖jar包,文档,官方案例.

5. Hadoop 运行模式

Hadoop运行模式包括 : 本地运行 / 伪分布式运行 / 完全分布式运行

?? 本地运行模式 ??

?‍??‍? Grep 官方案例 ?‍??‍?

官方案例地址 : Standalone Operation

By default, Hadoop is configured to run in a non-distributed mode, as a single Java process. This is useful for debugging.

The following example copies the unpacked conf directory to use as input and then finds and displays every match of the given regular expression. Output is written to the given output directory.

$ mkdir input
$ cp etc/hadoop/*.xml input
$ bin/hadoop jar s
1.快速开始,在hadoop目录下 创建input文件夹
[geek-developer@corehub-001 ~]$ cd /opt/module/hadoop/
[geek-developer@corehub-001 hadoop]$ ll
total 52
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 bin
drwxr-xr-x. 3 10011 10011  4096 Jan 26  2016 etc
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 include
drwxr-xr-x. 3 10011 10011  4096 Jan 26  2016 lib
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 libexec
-rw-r--r--. 1 10011 10011 15429 Jan 26  2016 LICENSE.txt
-rw-r--r--. 1 10011 10011   101 Jan 26  2016 NOTICE.txt
-rw-r--r--. 1 10011 10011  1366 Jan 26  2016 README.txt
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 sbin
drwxr-xr-x. 4 10011 10011  4096 Jan 26  2016 share
[geek-developer@corehub-001 hadoop]$ sudo mkdir input
[geek-developer@corehub-001 hadoop]$ ll
total 56
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 bin
drwxr-xr-x. 3 10011 10011  4096 Jan 26  2016 etc
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 include
drwxr-xr-x. 2 root  root   4096 Jan 24 22:23 input
drwxr-xr-x. 3 10011 10011  4096 Jan 26  2016 lib
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 libexec
-rw-r--r--. 1 10011 10011 15429 Jan 26  2016 LICENSE.txt
-rw-r--r--. 1 10011 10011   101 Jan 26  2016 NOTICE.txt
-rw-r--r--. 1 10011 10011  1366 Jan 26  2016 README.txt
drwxr-xr-x. 2 10011 10011  4096 Jan 26  2016 sbin
drwxr-xr-x. 4 10011 10011  4096 Jan 26  2016 share
[geek-developer@corehub-001 hadoop]$ 
2.在hadoop目录中,将etc文件夹内 以.xml为后缀的配置文件拷贝到input文件夹里
[geek-developer@corehub-001 hadoop]$ sudo cp etc/hadoop/*.xml input/
[geek-developer@corehub-001 hadoop]$ ls input/
capacity-scheduler.xml  hadoop-policy.xml  httpfs-site.xml  kms-site.xml
core-site.xml           hdfs-site.xml      kms-acls.xml     yarn-site.xml
[geek-developer@corehub-001 hadoop]$ 
3.执行share目录下的hadoop-mapreduce-examples-2.7.2.jar包,并指定输入和输出路径,以符合正则表达式并统计个数

dfs[a-z.]+ 以dfs开头,以a到z任意字符以.过滤掉 - - 字符

[root@corehub-001 geek-developer]# cd /opt/module/hadoop/
##########执行share目录下的hadoop-mapreduce-examples-2.7.2.jar包,并指定输入和输出路径#############
[root@corehub-001 hadoop]# hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar grep input/ output 'dfs[a-z.]+'
19/01/24 22:43:48 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
19/01/24 22:43:48 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
19/01/24 22:43:48 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
19/01/24 22:43:50 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1034400674_0001_r_000000_0' to file:/opt/module/hadoop/grep-temp-1632689888/_temporary/0/task_local1034400674_0001_r_000000
19/01/24 22:43:50 INFO mapred.LocalJobRunner: reduce > reduce
19/01/24 22:43:50 INFO mapred.Task: Task 'attempt_local1034400674_0001_r_000000_0' done.
19/01/24 22:43:50 INFO mapred.LocalJobRunner: Finishing task: attempt_local1034400674_0001_r_000000_0
19/01/24 22:43:50 INFO mapred.LocalJobRunner: reduce task executor complete.
19/01/24 22:43:50 INFO mapreduce.Job: Job job_local1034400674_0001 running in uber mode : false
19/01/24 22:43:50 INFO mapreduce.Job:  map 100% reduce 100%
19/01/24 22:43:50 INFO mapreduce.Job: Job job_local1034400674_0001 completed successfully
19/01/24 22:43:50 INFO mapreduce.Job: Counters: 30
	File System Counters
		FILE: Number of bytes read=2691317
		FILE: Number of bytes written=5002436
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
	Map-Reduce Framework
		Map input records=745
		Map output records=1
		Map output bytes=17
		Map output materialized bytes=67
		Input split bytes=877
		Combine input records=1
		Combine output records=1
		Reduce input groups=1
		Reduce shuffle bytes=67
		Reduce input records=1
		Reduce output records=1
		Spilled Records=2
		Shuffled Maps =8
		Failed Shuffles=0
		Merged Map outputs=8
		GC time elapsed (ms)=147
		Total committed heap usage (bytes)=2574778368
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=26007
	File Output Format Counters 
		Bytes Written=123
[root@corehub-001 hadoop]
提供了一个详细的MATLAB仿真程序,用于实现自回归(AR)模型的功率谱估计。该程序基于经典的数字信号处理教材——《数字信号处理理论、算法与实现》第三版中的相关内容(第545-547页),旨在帮助学习者理解和实践AR模型在功率谱估计中的应用。 简介 AR模型是一种常用的时间序列分析方法,通过建立当前值与其过去值之间的线性关系来描述时间序列的动态特性。功率谱估计是信号处理中的关键环节,用于揭示信号频率成分的分布。本仿真通过自相关方法实现AR模型参数的估计,并进而计算信号的功率谱。 特点 含详细注释:代码中添加了丰富的注释,便于初学者理解每一步的计算逻辑和目的。 参数可调:用户可根据需要调整AR模型的阶数(p值)、信号长度等参数,以适应不同的信号分析需求。 理论联系实际:通过将书本知识转化为实践操作,加深对AR模型及其在功率谱估计中应用的理解。 使用说明 环境要求:确保你的计算机上已安装MATLAB,并且版本适合运行提供的脚本。 加载脚本:将提供的MATLAB文件导入到MATLAB的工作环境中。 修改配置:根据需要修改代码中的参数配置,如AR模型的阶数等。 运行仿真:执行脚本,观察并分析输出结果,包括自回归模型的系数以及估算出的功率谱。 学习与分析:通过对比不同参数下的结果,深入理解AR模型在功率谱估计中的行为。 注意事项 在使用过程中,可能需要基础的数字信号处理知识以便更好地理解代码背后的数学原理。 请确保你的MATLAB环境已正确设置,能够支持脚本中的所有函数和运算。 结论 此资源对于研究信号处理、通信工程或是进行相关学术研究的学生和科研人员来说是一个宝贵的工具。它不仅提供了理论知识的具体实现,也是提升实践技能的优秀案例。通过动手操作,你将更加熟练地掌握AR模型及其在功率谱估计中的应用技巧。 开始探索,深入了解AR模型的力量,解开信号隐藏的秘密吧!
提供了关于时间序列分析与预测的宝贵资源,特别聚焦于**自回归积分滑动平均模型(ARIMA)**及其应用。对于那些希望深入理解并实践时间序列建模的学者、研究人员以及数据分析爱好者来说,这是一个不可或缺的学习材料。本资源不仅包括了详细的理论讲解,涵盖了时间序列分析的基础,如移动平均(MA)、自回归(AR)、指数平滑等关键概念,而且通过具体的ARIMA模型解析,搭配MATLAB编程实现实例,帮助用户从理论到实践全面掌握这一重要统计工具。 内容概览 理论讲解: 深入浅出地介绍了时间序列分析的基本原理,重点阐述ARIMA模型的构建步骤,包括如何识别模型的参数(p,d,q),以及其在处理非平稳数据中的作用。 MATLAB代码实现: 提供了多个ARIMA模型的MATLAB实现示例,这些代码覆盖了从数据准备、模型拟合、诊断检验到预测的全过程,是学习如何利用MATLAB进行时间序列分析的实用工具。 实例分析: 包括不同行业或领域的实际案例研究,展示如何应用ARIMA及其它时间序列方法解决真实世界的数据预测问题,增强理解和应用能力。 文件结构 时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar: 主要资源压缩包,解压后包含文档和MATLAB代码文件夹。 文档: 提供了理论知识讲解。 MATLAB代码: 实现了文中讨论的各种模型,附带注释,便于理解与修改。 使用指南 下载资源: 点击下载“时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar”文件。 解压文件: 解压缩至本地,确保你可以访问文档和代码。 环境准备: 确保你的电脑上已安装MATLAB,并熟悉基本操作。 学习流程: 首先阅读文档理解时间序列分析的理论基础,然后逐步跟随MATLAB代码示例进行实践。 实践应用: 尝试将所学应用到自己的数据集上,调整参数以优化模型性能。 注意事项 请根据M
大数据生态系统是由多个组件构成的,这些组件相互之间通过数据的传输和处理进行连接,共同实现大数据的处理和分析。其中,hadoop生态系统大数据生态系统中的一个重要组成部分。 hadoop生态系统的鱼骨图主要可以分为以下几个组件: 1. HDFS(Hadoop分布式文件系统):HDFS是hadoop生态系统中的分布式文件系统,它能够将大规模数据存储在集群的各个机器上,并提供高可靠性和高吞吐量的数据访问。 2. MapReduce:MapReduce是hadoop生态系统中的一种编程模型,用于处理大规模数据的并行计算。通过将任务分解为多个子任务,并在分布式环境中进行计算和结果的合并,MapReduce能够高效地处理大数据。 3. YARN(Yet Another Resource Negotiator):YARN是hadoop生态系统中的资源管理和作业调度框架,它负责分配集群中的计算资源,并协调各个作业的执行。YARN的出现使得hadoop生态系统能够同时运行多个并发作业,提高了系统的利用率和效率。 4. HBase:HBase是hadoop生态系统中的分布式非关系型数据库,它基于HDFS构建,具有高可靠性、高可扩展性和高性能的特点。HBase能够存储海量的结构化和半结构化数据,并支持快速的随机读写操作。 5. Hive:Hive是hadoop生态系统中的数据仓库工具,它提供了类似于SQL的查询语言,使得用户可以通过简单的SQL语句来查询和分析存储在hadoop集群中的数据。Hive的优势在于它能够将复杂的查询转化为MapReduce任务,从而实现对大规模数据的高效处理。 总之,hadoop生态系统的鱼骨图展示了其不同组件之间的关系和作用。通过理解和分析这些组件,可以更好地掌握和应用hadoop生态系统,实现对大数据的有效处理和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值