YOLOv5手把手教你制作VOC格式数据集与模型训练

引言

2020年2月YOLO之父Joseph Redmon宣布退出计算机视觉研究领域,2020 年 4 月 23 日YOLOv4 发布,2020 年 6 月 10 日YOLOv5发布。
在这里插入图片描述

YOLOv5源代码:https://github.com/ultralytics/yolov5

如果接触过目标检测算法框架,相信大家对YOLOv5再熟悉不过了,并且根据不同的项目的背景下,制作自己的数据集,是我们必不可少的一步。废话不多说,下面手把手的教你制作自己的训练数据集。

数据预处理

1. 视频–>图像

一般我们拿到手的是视频,或者是图像;对于视频,我们根据项目的需求,把视频先转换成图像。新建一个images文件夹用于存放图像;新建一个Annotations文件夹用于存放标注数据后对应的Xml数据;新建一个labels文件夹用于存放已经标注过的图像源与对应的Xml文件文件名与路径,为其后模型训练做准备。
本文images和Xml文件夹的路径为 D:/inspectionData/VOCData/。
存放视频的路径为 D:/inspectionData/video/10.10.0.36_01_20210729205306871.mp4
【注:如果拿到手的源数据是图像,则省略此步骤】

在这里插入图片描述

代码

import cv2
import numpy as np

vc = cv2.VideoCapture(r'D:/inspectionData/video/10.10.0.36_01_20210729205306871.mp4')  # 读入视频文件
c = 1

if vc.isOpened():  # 判断是否正常打开
    rval, frame = vc.read()
else:
    rval = False

timeF = 6  # 视频帧计数间隔频率

while rval:  # 循环读取视频帧
    rval, frame = vc.read()
    if (c % timeF == 0):  # 每隔timeF帧进行存储操作
        # cv2.imshow('pic',frame)
        cv2.imwrite(r'D:/inspectionData/VOCData/images/' + str('hat_')  + str(c) + '.jpg', frame)  # 存储为图像
       
    c = c + 1
    cv2.waitKey(1)

vc.release()

注: 在运行前需要修改对应的视频路径和存放数据集的路径。

运行
在这里插入图片描述

处理后的数据
请添加图片描述

2. 安装标注数据的工具

LabelImg是一个开源的图形图像注释工具,地址:https://github.com/chinakook/labelImg2
下载解压后,本文解压目录为 D:\labelImg2-master 。在解压的目录下安装对应的依赖库

Windows + Anaconda

# 安装pyqt依赖包
conda install pyqt=5

安装后在对应的解压目录下启动该工具
请添加图片描述

# 启动 labelImg
python labelImg.py

成功启动 labelImg 后界面如下:
请添加图片描述

3. 标注数据

下面讲解如何使用 labelImage工具标注图片信息用于训练自己的数据集。 在 labelImage工具 左上角的菜单栏打开我们的要标注图像的文件夹:

File ->Open Dir

在 labelImage工具 左上角的菜单栏打开我们的要保存标注后对应Xml的文件夹:

File ->Open Save Dir

在 labelImage工具中加载进来图像后如下图:
请添加图片描述
首先,设置自动保存:

View -> Auto Saving

通过快捷键w + 拖动鼠标选中我们要标注的对象,在 labelImg工具 的右上角Manage Label 中输入目标的标签hat ->add ->set as defult,点击OK,即可获得一个xml文件。

请添加图片描述
在这里插入图片描述
由于我们设置了自动保存,直接按 “d” 快捷键切换下一张图像以同样的操作进行标注。

到此,即可完成自己制作VOC格式的数据集。

labelImage工具快捷键

Ctrl + u 从目录加载所有图像
Ctrl + r 更改默认注解目标目录
Ctrl + s 保存
Ctrl + d 复制当前标签和矩形框
Space 将当前图像标记为已验证
w 创建一个矩形框
d 下一张图片
a 上一张图片
del 删除选中的矩形框
Enter 选择一个矩形框
Ctrl + + 放大
Ctrl - - 缩小
↑→↓← 键盘箭头移动选定的矩形框

4. 训练模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值