DataWhale动手学数据分析Task02

本文介绍了如何通过pandas处理数据清洗,包括缺失值观察与处理(如np.nan和isnull的区别)、重复值检测、特征分箱与文本转换,如Age分段和类别编码。重点讲解了数据预处理的重要步骤,为后续分析和建模打下坚实基础。
摘要由CSDN通过智能技术生成

1. 第二章:数据清洗及特征处理

我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章我们将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。

1.1 缺失值观察与处理

1.1.1 任务一:缺失值观察

对于数据缺失值的观察主要可以通过pandas中的两个函数来完成,分别是isnull和isna(两个函数没有区别),并且通过与sum的组合可以计算出每列中缺失值的总和、比例。
若想要对某一列有缺失值对应的行进行观察,可以利用Series上的isna或者notna进行布尔索引。

import pandas as pd
df = pd.read_csv('./example.csv')
df[df.Sex.isna()].head()

若想要对某一个列或者多个列中对应多个值或一个值缺失的行进行观察,可以利用isna、notna和all、any的组合进行检索。

import pandas as pd
df = pd.read_csv('./example.csv')
TestSet = ['Sex','Age','Cabin']
df[TestSet.isna().all(1)]#全部缺失
df[TestSet.isna().any(1)]#至少有一个缺失
df[TestSet.notna().all(1)]#没有缺失
1.1.2 任务二:缺失值处理

处理缺失值可使用的函数有dropna函数与fillna函数。

其中,dropna函数的主要参数为:

参数作用
axis轴方向
how删除方式
thresh删除的非缺失值个数阈值
subset备选的删除子集

fillna函数的主要参数为:

参数作用
value填充值,可以是标量也可以是索引到元素的字典映射
method填充方法
limit表示连续缺失值的最大填充次数

【思考】检索空缺值用np.nan,None以及.isnull()哪个更好,这是为什么?如果其中某个方式无法找到缺失值,原因又是为什么?

【回答】数值列读取数据后,空缺值的数据类型为float64所以用None一般索引不到,比较的时候最好用np.nan

1.2 重复值观察与处理

对于数据中重复值的观察与处理主要使用函数duplicated()与drop_duplicates()来完成。

1.3特征观察与处理

1.3.1分箱处理

所谓分箱操作就是在建模过程中对连续特征的离散化,其包含有等距分箱、等频分箱等操作。

如将数据中连续变量Age平均分箱成5个年龄段,并分别用类别变量12345来表示:

df['AgeCut'] = pd.cut(df['Age'], 5, labels=[1,2,3,4,5])

又或将连续变量Age划分为[0,5) [5,15) [15,30) [30,50) [50,80)五个年龄段,并分别用类别变量12345表示:

df['AgeCut'] = pd.cut(df['Age'], [0, 5, 15, 30, 50, 80], labels=[1,2,3,4,5])

或者将连续变量Age按10% 30% 50% 70% 90%五个年龄段,并用分类变量12345表示:

df['AgeCut'] = pd.qcut(df['Age'],[0,0.1,0.3,0.5,0.7,0.9],labels = [1,2,3,4,5])

对于数据的分箱操作、区间构造操作主要通过pandas中cut、qcut两个函数来完成。
对于cut函数,最重要的参数为bin,如果传入整数n,则代表把整个传入数组的按照最大和最小值等间距地分为n。
bins还可以传入指定区间分割点的列表,cut另外的常用参数为labels,其代表划分区间的名字。

从用法上来说,qcut与cut几乎没有差别,只是将bins参数变成q参数,q参数为整数时,按照n等分位把数据分箱。

1.3.2 对文本变量进行变换

对文本数据的变量名及种类进行查看主要通过value_counts()函数来完成,如:

df['Embarked'].value_counts()

返回结果如下所示:
在这里插入图片描述对文本数据变量名及种类进行观察后可以对其进行转换,可以使用数值变量或者one-hot编码来完成对于文本变量的表示。

方法一、利用replace函数完成转换

df['Sex_num'] = df['Sex'].replace(['male','female'],[1,2])

方法二、利用map函数完成转换

df['Sex_num'] = df['Sex'].map({'male': 1, 'female': 2})

方法三、使用sklearn.preprocessing的LabelEncoder来完成转换

from sklearn.preprocessing import LabelEncoder
for feat in ['Cabin', 'Ticket']:
    lbl = LabelEncoder()  
    label_dict = dict(zip(df[feat].unique(), range(df[feat].nunique())))
    df[feat + "_labelEncode"] = df[feat].map(label_dict)
    df[feat + "_labelEncode"] = lbl.fit_transform(df[feat].astype(str))

对于将类别文本转换为one-hot编码,可通过get_dummies()函数来完成:

for feat in ["Age", "Embarked"]:
    x = pd.get_dummies(df[feat], prefix=feat)
    df = pd.concat([df, x], axis=1)
1.3.3 文本特征提取

如从纯文本Name特征里提取出Titles的特征(所谓的Titles就是Mr,Miss,Mrs等)

df['Title'] = df.Name.str.extract('([A-Za-z]+)\.', expand=False)
df.head()

完成上述文本特征提取的函数为str.extract()函数。
提取既可以认为是一种返回具体元素(而不是布尔值或元素对应的索引位置)的匹配操作,也可以认为是一种特殊的拆分操作。

数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值