【leetcode刷题记录】15. 三数之和
题目描述
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:
输入:nums = []
输出:[]
示例 3:
输入:nums = [0]
输出:[]
提示:
0 <= nums.length <= 3000
-10^5 <= nums[i] <= 10^5
方法一
直接纯暴力搜索的方法时间复杂度为O(n^3),不可取。
方法二
排序+双指针,可减少一层遍历,复杂度为O(n^2)。具体思路大概为:
双指针法铺垫: 先将给定 nums 排序,复杂度为 O(NlogN)O(NlogN)。
双指针法思路: 固定 33 个指针中最左(最小)数字的指针 k,双指针 i,j 分设在数组索引 (k, len(nums))(k,len(nums)) 两端,通过双指针交替向中间移动,记录对于每个固定指针 k 的所有满足 nums[k] + nums[i] + nums[j] == 0 的 i,j 组合:
- 当 nums[k] > 0 时直接break跳出:因为 nums[j] >= nums[i] >= nums[k] > 0,即 33 个数字都大于 00 ,在此固定指针 k 之后不可能再找到结果了。
- 当 k > 0且nums[k] == nums[k - 1]时即跳过此元素nums[k]:因为已经将 nums[k - 1] 的所有组合加入到结果中,本次双指针搜索只会得到重复组合。
- i,j 分设在数组索引 (k, len(nums))(k,len(nums)) 两端,当i < j时循环计算s = nums[k] + nums[i] + nums[j],并按照以下规则执行双指针移动:
①当s < 0时,i += 1并跳过所有重复的nums[i];
②当s > 0时,j -= 1并跳过所有重复的nums[j];
③当s == 0时,记录组合[k, i, j]至res,执行i += 1和j -= 1并跳过所有重复的nums[i]和nums[j],防止记录到重复组合。
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
sort(begin(nums), end(nums));
vector<vector<int>> result;
for(int k=0; k<nums.size(); k++){
if(k > 0 && nums[k] == nums[k-1]) continue;
int i = k+1, j = nums.size()-1;
while(i<j){
if(nums[k]+nums[i]+nums[j]>0){
--j;
while (i < j && nums[j] == nums[j+1]) --j;
}
else if(nums[k]+nums[i]+nums[j]<0){
++i;
while (i < j && nums[i] == nums[i-1]) ++i;
}
else{
result.push_back({nums[k], nums[i], nums[j]});
--j;
++i;
while (i < j && nums[i] == nums[i-1]) ++i;
while (i < j && nums[j] == nums[j+1]) --j;
}
}
}
return result;
}
};
运行时间还有提升空间,但目前没有找到更好的解法,如果找到了再来更新。