两条斜线——枚举和暴力

(注:因超时此解无法通过牛客网检测) 

题目描述

平面上有n个点,现在你需要建造两条路,一条是斜率为1,
另一条斜率为-1
你的任务是让这两条路经过尽可能多的点
求最多经过几个点

输入描述:

第一行输入一个整数N表示点的个数
第二行输入N个数表示X坐标
第三行输入N个数表示Y坐标
1<=N<=1000 ,0<=x[i],y[i]<=999

输出描述:

输出一个整数。 

示例1:

//输入

4
1 4 4 5
3 0 2 3

//输出

4

说明: (1,3) (4,0) (4,2) (5,3)四个点都可以被经过。

思路

已知两条线斜率分别为1和-1;也就是说两条分别为y=x+m和y=-x+n,因此可知,同一条线上点坐标带入后的截距(m、n)相同,即m=y-x,n=y+x。

本题的重点在于3个嵌套的for循环。要注意其中的逻辑以及定义m、n、num三个变量的位置!!!

因为直线的斜率已确定,因此每个点都有不同且确定的m和n,也就是说有N种m和N种n

外面两层for循环是为了遍历所有的m和n两两组合的情况。

最内层for循环是为了确定每一种m和n的组合经过了几个点,并用num计数。并用便利max确定num的最大值。

完整代码

#include <stdio.h>
int main()
{
    int N;
    scanf("%d",&N);
    int X[1000];
    int Y[1000];
    for(int i=0;i<N;i++)
    {
        scanf("%d",&X[i]);
    }
     for(int i=0;i<N;i++)
    {
        scanf("%d",&Y[i]);
    }
    int m=0;
    int n=0;
    int max=0;
    for(int j=0;j<N;j++)
    {
        m=Y[j]-X[j];
        for(int k=0;k<N;k++)
        {
            int num=0;
            n=Y[k]+X[k];
            for(int g=0;g<N;g++)
            {
                if(Y[g]-X[g]==m || Y[g]+X[g]==n)
                {
                    num++;
                }
                if(max<num)
                {
                    max=num;
                } 
            }
        }
    }
    
    printf("%d",max);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值