(注:因超时此解无法通过牛客网检测)
题目描述
平面上有n个点,现在你需要建造两条路,一条是斜率为1,
另一条斜率为-1
你的任务是让这两条路经过尽可能多的点
求最多经过几个点
输入描述:
第一行输入一个整数N表示点的个数 第二行输入N个数表示X坐标 第三行输入N个数表示Y坐标 1<=N<=1000 ,0<=x[i],y[i]<=999
输出描述:
输出一个整数。
示例1:
//输入
4 1 4 4 5 3 0 2 3
//输出
4
说明: (1,3) (4,0) (4,2) (5,3)四个点都可以被经过。
思路
已知两条线斜率分别为1和-1;也就是说两条分别为y=x+m和y=-x+n,因此可知,同一条线上点坐标带入后的截距(m、n)相同,即m=y-x,n=y+x。
本题的重点在于3个嵌套的for循环。要注意其中的逻辑以及定义m、n、num三个变量的位置!!!
因为直线的斜率已确定,因此每个点都有不同且确定的m和n,也就是说有N种m和N种n
外面两层for循环是为了遍历所有的m和n两两组合的情况。
最内层for循环是为了确定每一种m和n的组合经过了几个点,并用num计数。并用便利max确定num的最大值。
完整代码
#include <stdio.h>
int main()
{
int N;
scanf("%d",&N);
int X[1000];
int Y[1000];
for(int i=0;i<N;i++)
{
scanf("%d",&X[i]);
}
for(int i=0;i<N;i++)
{
scanf("%d",&Y[i]);
}
int m=0;
int n=0;
int max=0;
for(int j=0;j<N;j++)
{
m=Y[j]-X[j];
for(int k=0;k<N;k++)
{
int num=0;
n=Y[k]+X[k];
for(int g=0;g<N;g++)
{
if(Y[g]-X[g]==m || Y[g]+X[g]==n)
{
num++;
}
if(max<num)
{
max=num;
}
}
}
}
printf("%d",max);
return 0;
}