通俗话说一说各种Normalization以及用deeplearning4j实现Layer Normalization

个人博客导航页(点击右侧链接即可打开个人博客):大牛带你入门技术栈 

一、Normalization是什么

    Normalization一句话概括来说就是用一种办法,将一组数据压到均值为0,方差为1的正态分布上去,具体做法是数据集的每一个元素减去均值再除以标准差。公式如下:(请忽略参数g,g的问题很诡异,后面说)

    这个公式说的更直白一点就是,把每一个a,经过平移和缩放,得到一个新值。而这样做的一个理由是,平移缩放并不会改变原始数据的分布情况,原来最大的还是最大,原来最小的还是最小。

    Deeplearning中有很多Normalization的方法,有BN、LN、IN、GN等等,每一种Normalization公式都一样,只是沿着的轴不一样,BN就是沿着minibatch方向,LN就是沿着影藏层的output vector维方向,举个例子,对于四维张量[minibatch,depth、height、width],那就是沿着depth方向,把height、width维约简掉。

二、说说Layer Normalization

    论文地址:https://arxiv.org/pdf/1607.06450.pdf

    Layer Normalization对于时间序列数据有奇效,下面截一段论文的原文。这是在RNN上用Layer Normalization

   

        简短的话说一下论文的变量含义,a表示t时刻点rnn的预输出值(还没有经过激活函数哦),h表示rnn某一个隐层t时刻点的输出。

        那么,这里Normalization是哪一个维度呢?假设RNN的输入张量为[minibatch、layerSize、timesteps],这么这里Normalization的就是layerSize这一维。这样可能还是太抽象,请看下图:

    

 

    这里Normalization的就是红色箭头指向的每一个维度的向量,对于一条数据的每个time step而言,就求出一个均值和方差,进行变换,下一个time step类推下去。那么多个time step就有多个均值和方差。

三、重点说说参数g和b

    这里g和b的维度要和h的维度相同,也就是上图的values per time step这一维度,也就是layer size的大小,这里g和b是跟随着网络参数学出来的。开始实现时,g的所有值一般会初始化为1,b的所有值会被初始化为0,随着训练的进行,g和b就会被修改为任意值了。那么Normalization也就没有了正态分布的效果,相当于layer size维乘以了一个随机向量,注意这里是向量点积,那么就等同于给一个随机的噪声,居然也能起作用,也是一个不能解释的问题。有点没有道理,但就是这么难以置信,居然是work的。

四、deeplearning4j的自动微分实现Layer Normalization

import java.util.Map;

import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.samediff.SDLayerParams;
import org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.linalg.api.ndarray.INDArray;

public class LayerNormaliztion extends SameDiffLayer {

	// gain * standardize(x) + bias

	private double eps = 1e-5;

	private static String GAIN = "gain";
	private static String BIAS = "bias";

	private int nOut;
	private int timeStep;

	public LayerNormaliztion(int nOut, int timeStep) {
		this.timeStep = timeStep;
		this.nOut = nOut;
	}

	protected LayerNormaliztion() {

	}

	@Override
	public InputType getOutputType(int layerIndex, InputType inputType) {
		return InputType.recurrent(nOut);
	}

	@Override
	public void defineParameters(SDLayerParams params) {
		params.addWeightParam(GAIN, 1, nOut, 1);
		params.addWeightParam(BIAS, 1, nOut, 1);
	}

	@Override
	public SDVariable defineLayer(SameDiff sd, SDVariable layerInput, Map<String, SDVariable> paramTable,
			SDVariable mask) {
		SDVariable gain = paramTable.get(GAIN);//论文中的g
		SDVariable bias = paramTable.get(BIAS);//论文中的b
		SDVariable mean = layerInput.mean("mean", true, 1);//均值
		SDVariable variance = sd.math().square(layerInput.sub(mean)).sum(true, 1).div(layerInput.getShape()[1]);//平方差
		SDVariable standardDeviation = sd.math().sqrt("standardDeviation", variance.add(eps));//标准差,加上eps 防止分母为0
		long[] maskShape = mask.getShape();
		return gain.mul(layerInput.sub(mean).div(standardDeviation)).add(bias)
				.mul(mask.reshape(maskShape[0], 1, timeStep));//掩码掩掉多余长度

	}

	@Override
	public void initializeParameters(Map<String, INDArray> params) {
		params.get(GAIN).assign(1);
		params.get(BIAS).assign(0);
	}

	public int getNOut() {
		return nOut;
	}

	public void setNOut(int nOut) {
		this.nOut = nOut;
	}

	public int getTimeStep() {
		return timeStep;
	}

	public void setTimeStep(int timeStep) {
		this.timeStep = timeStep;
	}

}

    五、实战的结果

    就用RNN做文本分类而言,加上LN,收敛会更平稳,但准确率大大下降了。

    在deeplearning的世界里,任何一种方法被提出来,只是在解当前的问题,对于每一种具体的问题,肯定是case by case。

附Java/C/C++/机器学习/算法与数据结构/前端/安卓/Python/程序员必读/书籍书单大全:

(点击右侧 即可打开个人博客内有干货):技术干货小栈
=====>>①【Java大牛带你入门到进阶之路】<<====
=====>>②【算法数据结构+acm大牛带你入门到进阶之路】<<===
=====>>③【数据库大牛带你入门到进阶之路】<<=====
=====>>④【Web前端大牛带你入门到进阶之路】<<====
=====>>⑤【机器学习和python大牛带你入门到进阶之路】<<====
=====>>⑥【架构师大牛带你入门到进阶之路】<<=====
=====>>⑦【C++大牛带你入门到进阶之路】<<====
=====>>⑧【ios大牛带你入门到进阶之路】<<====
=====>>⑨【Web安全大牛带你入门到进阶之路】<<=====
=====>>⑩【Linux和操作系统大牛带你入门到进阶之路】<<=====

天下没有不劳而获的果实,望各位年轻的朋友,想学技术的朋友,在决心扎入技术道路的路上披荆斩棘,把书弄懂了,再去敲代码,把原理弄懂了,再去实践,将会带给你的人生,你的工作,你的未来一个美梦。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于计算机专业的学生而言,参加各类比赛能够带来多方面的益处,具体包括但不限于以下几点: 技能提升: 参与比赛促使学生深入学习和掌握计算机领域的专业知识与技能,如编程语言、算法设计、软件工程、网络安全等。 比赛常涉及实际问题的解决,有助于将理论知识应用于实践中,增强问题解决能力。 实践经验: 大多数比赛都要求参赛者设计并实现解决方案,这提供了宝贵的动手操作机会,有助于积累项目经验。 实践经验对于计算机专业的学生尤为重要,因为雇主往往更青睐有实际项目背景的候选人。 团队合作: 许多比赛鼓励团队协作,这有助于培养学生的团队精神、沟技巧和领导能力。 团队合作还能促进学生之间的知识共享和思维碰撞,有助于形成更全面的解决方案。 职业发展: 获奖经历可以显著增强简历的吸引力,为求职或继续深造提供有力支持。 某些比赛可能直接与企业合作,提供实习、工作机会或奖学金,为学生的职业生涯打开更多门路。 网络拓展: 比赛是结识同行业人才的好机会,可以帮助学生建立行业联系,这对于未来的职业发展非常重要。 奖金与荣誉: 许多比赛提供奖金或奖品,这不仅能给予学生经济上的奖励,还能增强其成就感和自信心。 荣誉证书或奖状可以证明学生的成就,对个人品牌建设有积极作用。 创新与研究: 参加比赛可以激发学生的创新思维,推动科研项目的开展,有时甚至能促成学术论文的发表。 个人成长: 在准备和参加比赛的过程中,学生将面临压力与挑战,这有助于培养良好的心理素质和抗压能力。 自我挑战和克服困难的经历对个人成长有着深远的影响。 综上所述,参加计算机领域的比赛对于学生来说是一个全面发展的平台,不仅可以提升专业技能,还能增强团队协作、沟、解决问题的能力,并为未来的职业生涯奠定坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值