目录
题目解读
关键信息解读
- 一共有N+1个不同的元素
- 有一个元素出现了N次
- 数组的长度一定是偶数
隐藏信息
- 给出一个元素出现了N次,且一共有N+1个元素,说明了除了这个元素之外,其他的元素只会出现一次
- 所以我们找到某一个元素出现了两次,这个元素一定会出现N次
实例分析
示例一:
- [1,2,3,3]
- 3元素出现了两次,说明3出现了N次,N = 2,长度为2N = 4
示例三:
- [5,1,5,2,5,3,5,4]
- 5元素出现了两次,说明5元素出现了N次,N=4,长度为2N = 8
算法解读
方法一:快慢双指针
- 快慢双指针算法针对于重复元素的题目都适用,在这道算法题上,快慢双指针虽不是官方解法,但是算法效率中规中矩
- 所以,作为通用方法,是我们重点掌握的一个方法
方法二:哈希计数法
- 哈希计数法作为传统计数法的升级版,代码相对于传统计数来说更加的简单,逻辑更加的清晰,在很多重复元素的题目中也适用
- 但是该算法的缺点也很明显,就是效率太低
- 所以,作为通用方法,还是我们重点掌握的一个方法
方法三:随机值法
- 随机值这个方法首次出现,针对于这类题目有奇效
- 所以作为了解即可
算法思路
方法一:
- 根据slow和fast的定义,初始化并移动我们的快慢指针
- 如果该双指针的位置被错开了,说明一定有一个元素出现了两次
- 直接返回即可
方法二:
- 根据HashSet集合中的add方法,该方法的特点是,如果添加元素成功就返回true,否则返回false
- 根据上面的特性就可以找出出现两次的元素
方法三:
- 创建一个Random类,随机获取下标
- 将这两个下标对应的值进行比较,如果两个下标不一样且对应的元素一样
- 直接返回该元素即可
代码实现与解析
方法一:
class Solution {
public int repeatedNTimes(int[] nums) {
// 将数组的长度记录到变量len中
var len = nums.length;
// 根据slow和fast的定义,我们这个算法的目的是为了寻找出现两次的元素,所以都初始化为1(不会请看以往力扣题解)
var slow = 1;
var fast = 1;
// 用于保存最终结果的变量
var target = 0;
// 对数组进行排序,只有对数组进行排序,相等的两个元素才可以相邻,快慢双指针才可以有效
Arrays.sort(nums);
while (fast <= len) {
// 如果该条件不满足,说明fast指向的元素至少出现了两次,直接赋值退出即可
// 否则slow++,最后再fast++
if (nums[slow - 1] != nums[fast]) {
slow++;
}else {
target = nums[fast];
break;
}
fast++;
}
return target;
}
}
方法二:
class Solution {
public int repeatedNTimes(int[] nums) {
// 创建对应的Set集合
var set = new HashSet<Integer>();
// 用于存放目标元素
var target = -1;
// 遍历该数组,依次将每一个元素放入Set集合中
for (var n : nums) {
// 如果add方法返回false,说明该元素已经放进去过了,即这个元素出现了两次
// 通过逻辑非进入if语句,赋值target并退出即可
if (!set.add(n)) {
target = n;
break;
}
}
return target;
}
}
方法三:
class Solution {
public int repeatedNTimes(int[] nums) {
// 先new对应的random类
var rd = new Random();
// 用于记录数组长度
var n = nums.length;
while (true) {
// 表示产生一个[0,n)之间的随机值,且返回值是int类型
var x = rd.nextInt(n);
var y = rd.nextInt(n);
// 如果x != y,且对应元素一样,直接返回即可
// 如果x = y,说明不了其出现了两次
if (x != y && nums[x] == nums[y]) {
return nums[x];
}
}
}
}
算法总结
为什么会出现上面的情况,我来给大家分析一下
- 针对方法一:最坏的情况下要遍历N次(数组长度为2N),而且两个指针都要移动,所以相对耗费的时间比较多
- 针对方法二:如果没有break的情况下,一共会遍历2N次,但是有了break,平均时间复杂度下来了,耗费时间少了
- 针对于方法三:得到第一个重复元素的概率是 N / 2N 第二个重复元素的概率是 (N - 1) / 2N,当N -> ♾️,概率约为1/4,即最多遍历4次就可以找到所有的重复元素,非常的好
博客仅供参考,如果写得好的话记得点赞哦!