题目是LeetCode第180场周赛的第三题,链接:将二叉搜索树变平衡。具体描述为:给你一棵二叉搜索树,请你返回一棵平衡后的二叉搜索树,新生成的树应该与原来的树有着相同的节点值。如果一棵二叉搜索树中,每个节点的两棵子树高度差不超过 1 ,我们就称这棵二叉搜索树是平衡的 。如果有多种构造方法,请你返回任意一种。
- 树节点的数目在 1 到 10^4 之间。
- 树节点的值互不相同,且在 1 到 10^5 之间。
示例:
输入:root = [1,null,2,null,3,null,4,null,null]
输出:[2,1,3,null,null,null,4]
解释:这不是唯一的正确答案,[3,1,4,null,2,null,null] 也是一个可行的构造方案。
这是个medium难度的题目,做法相对也不难,只要知道先对节点排序(中序遍历即可),然后以排序后的中间节点为根节点,其左边的节点作为左子树,右边的节点作为右子树,然后这两个子树还是以同样的方式构建树即可。这样总能保证左右子树的节点数之差不超过1,进而可保证高度差不会超过1。
时间复杂度为 O ( n ) O(n) O(n)(其中n为节点数),空间复杂度为 O ( n ) O(n) O(n)(存储排序后节点)。
JAVA版代码如下:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private List<Integer> sortedLst;
private void inorderTraversal(TreeNode node) {
if (node == null) {
return;
}
inorderTraversal(node.left);
sortedLst.add(node.val);
inorderTraversal(node.right);
}
private TreeNode buildTree(int leftIdx, int rightIdx) {
if (leftIdx > rightIdx) {
return null;
}
if (leftIdx == rightIdx) {
return new TreeNode(sortedLst.get(leftIdx));
}
int middleIdx = leftIdx + (rightIdx - leftIdx) / 2;
TreeNode root = new TreeNode(sortedLst.get(middleIdx));
root.left = buildTree(leftIdx, middleIdx - 1);
root.right = buildTree(middleIdx + 1, rightIdx);
return root;
}
public TreeNode balanceBST(TreeNode root) {
sortedLst = new ArrayList<>();
inorderTraversal(root);
return buildTree(0, sortedLst.size() - 1);
}
}
提交结果如下:
Python版代码如下:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def balanceBST(self, root: TreeNode) -> TreeNode:
sortedLst = []
def inorderTraversal(node): #中序遍历,得到一个排好序的节点值列表
if node is None:
return
inorderTraversal(node.left)
sortedLst.append(node.val)
inorderTraversal(node.right)
def bulidTree(left, right): #以列表中间节点为根节点,左边节点为左子树,右边节点为右子树
if left > right:
return None
if left == right:
return TreeNode(sortedLst[left])
middldIdx = left + (right - left) // 2
node = TreeNode(sortedLst[middldIdx])
node.left = bulidTree(left, middldIdx - 1)
node.right = bulidTree(middldIdx + 1, right)
return node
inorderTraversal(root)
return bulidTree(0, len(sortedLst) - 1)
提交结果如下: