题目是LeetCode第184场周赛的第一题,链接:数组中的字符串匹配。具体描述为:给你一个字符串数组 words ,数组中的每个字符串都可以看作是一个单词。请你按 任意 顺序返回 words 中是其他单词的子字符串的所有单词。如果你可以删除 words[j] 最左侧和/或最右侧的若干字符得到 word[i] ,那么字符串 words[i] 就是 words[j] 的一个子字符串。
- 1 <= words.length <= 100
- 1 <= words[i].length <= 30
- words[i] 仅包含小写英文字母。
- 题目数据 保证 每个 words[i] 都是独一无二的。
示例1:
输入:words = ["mass","as","hero","superhero"]
输出:["as","hero"]
解释:"as" 是 "mass" 的子字符串,"hero" 是 "superhero" 的子字符串。
["hero","as"] 也是有效的答案。
示例2:
输入:words = ["leetcode","et","code"]
输出:["et","code"]
解释:"et" 和 "code" 都是 "leetcode" 的子字符串。
示例3:
输入:words = ["blue","green","bu"]
输出:[]
题目很简单,一种很容易想到的方法就是先按字符串长度降序排序,然后对于遍历到的第i
个字符串,只判断其是否为第0~i-1
个字符串中某个字符串的子字符串。因为有两层循环,假设判断子字符串存在与否的平均复杂度为L
(可能根据具体的匹配方法复杂度有所不同),则总的时间复杂度为
O
(
n
2
L
)
O(n^{2}L)
O(n2L),空间复杂度为
O
(
1
)
O(1)
O(1)。
JAVA版代码如下:
class Solution {
public List<String> stringMatching(String[] words) {
Arrays.sort(words, new Comparator<String>() {
@Override
public int compare(String s1, String s2) {
return s2.length() - s1.length();
}
});
List<String> result = new LinkedList<>();
for (int i = 0; i < words.length; ++i) {
for (int j = 0; j < i; ++j) {
if (words[j].contains(words[i])) {
result.add(words[i]);
break;
}
}
}
return result;
}
}
提交结果如下:
此外是在评论区看到的另一种方法,先将所有字符串连在一块成为一个更长的字符串(不同字符串之间用非小写字母连起来),然后就可以利用indexOf()
和lastIndexOf()
返回的结果是否一样判断一个字符串是否在这个更长的字符串中出现了至少两次,出现了至少两次说明除了它自身必定还有另外一个字符串包含它。
JAVA版代码如下:
class Solution {
public List<String> stringMatching(String[] words) {
StringBuilder all = new StringBuilder(3000);
for (String word : words) {
all.append(word + " ");
}
List<String> result = new LinkedList<>();
for (String word : words) {
if (all.indexOf(word) != all.lastIndexOf(word)) {
result.add(word);
}
}
return result;
}
}
提交结果如下:
Python版代码如下:
class Solution {
public List<String> stringMatching(String[] words) {
Arrays.sort(words, new Comparator<String>() {
@Override
public int compare(String s1, String s2) {
return s2.length() - s1.length();
}
});
List<String> result = new LinkedList<>();
for (int i = 0; i < words.length; ++i) {
for (int j = 0; j < i; ++j) {
if (words[j].contains(words[i])) {
result.add(words[i]);
break;
}
}
}
return result;
}
}
提交结果如下: