跑跑卡丁车是时下一款流行的网络休闲游戏,你可以在这虚拟的世界里体验驾驶的乐趣。这款游戏的特别之处是你可以通过漂移来获得一种
加速卡,用这种加速卡可以在有限的时间里提高你的速度。为了使问题简单化,我们假设一个赛道分为L段,并且给你通过每段赛道的普通耗时Ai和用加速卡的耗时Bi。加速卡的获得机制是:普通行驶的情况下,每通过1段赛道,可以获得20%的能量(N2O).能量集满后获得一个加速卡(同时能量清0).加速卡最多可以储存2个,也就是说当你有2个加速卡而能量再次集满,那么能量清零但得不到加速卡。一个加速卡只能维持一段赛道,游戏开始时没有加速卡。
问题是,跑完n圈最少用时为多少?
Input
每组输入数据有3行,第一行有2个整数L(0<L<100),N(0<N<100)分别表示一圈赛道分为L段和有N圈赛道,接下来两行分别有L个整数Ai和Bi
(Ai > Bi).
Output
对于每组输入数据,输出一个整数表示最少的用时.
Sample Input
18 1
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
8 8 8 8 8 8 8 8 8 8 8 8 8 8 1 1 8 8
Sample Output
145
对于sample这组数据,你可以先在普通情况下行驶前14段,这时你有2个加速卡以及80%的能量(N2O).在第15和16段用掉2个加速卡,通过第
17段赛道后又可以得到一个加速卡,在第18段赛道使用.
题意:
一个赛车游戏,现在有赛道数和圈数,然后有正常通过每一个赛道的时间和用加速卡通过的时间,每正常通过五个赛道,获得一个加速卡,加速卡最多储存两个,但是有了两个时候,能量还是会增加,求通过全部赛道的最短时间
题解:
用dp[i][j]来表示通过i号赛道时还有j个能量时的最小时间,对每一个赛道,分三种情况
1.不用能量卡
for(j=14;j>=0;j–) //不用能量卡
dp[i][j+1]=min(dp[i][j+1],dp[i-1][j]+a[(i-1)%L]);//能量加1,此赛道正常通过
2.使用能量卡
for(j=14;j>=5;j–) //用能量卡
dp[i][j-5]=min(dp[i][j-5],dp[i-1][j]+b[(i-1)%L]);//能量减5,此赛道加速通过
3.能量为15时,第三个能量卡直接清除
dp[i][10]=min(dp[i][10],dp[i][15]); //有15个,减为10
最后在所有跑完赛道后剩余能量值的情况中找到最小值
代码:
#include"stdio.h"
#include"string.h"
#include"algorithm"
using namespace std;
const int INF=0x3f3f3f3f;
int a[110],b[110];
int dp[10010][20];
int main()
{
int L,N;
while(~scanf("%d %d",&L,&N))
{
int i,j;
for(i=0;i<L;i++)
scanf("%d",&a[i]);
for(i=0;i<L;i++)
scanf("%d",&b[i]);
int sum=L*N;
for(i=0;i<=sum;i++) //初始状态赋值为无穷大
for(j=0;j<=15;j++)
dp[i][j]=INF;
dp[0][0]=0;
for(i=1;i<=sum;i++)//遍历全部赛道
{
for(j=14;j>=0;j--) //不用能量卡
dp[i][j+1]=min(dp[i][j+1],dp[i-1][j]+a[(i-1)%L]);//能量加1,此赛道正常通过
for(j=14;j>=5;j--) //用能量卡
dp[i][j-5]=min(dp[i][j-5],dp[i-1][j]+b[(i-1)%L]);//能量减5,此赛道加速通过
dp[i][10]=min(dp[i][10],dp[i][15]); //有15个,减为10
}
int ans=INF;
for(int i=0;i<15;i++)//找到最小值
if(ans>dp[sum][i])
ans=dp[sum][i];
printf("%d\n",ans);
}
return 0;
}