递归的典型问题

什么是递归?

程序调用自身的编程技巧称为递归。它通常把一个大型复杂的问题层层转化为一个与原问题相似规模较小的问题来求解。

递归的主要思考方式:

把大事化小!

递归的必要条件:

1.存在限制条件,当满足这个限制条件的时候,递归便不再继续
2.每次递归调用之后越来越接近这个限制条件

下面我们通过两个有趣的题来更深刻的了解递归。
一、汉诺塔问题
      题目:古代有一个梵塔,塔内有三个柱子A、B、C,A柱子上有若干个盘子,盘子大的在下,小的在上,目标是要将这若干个盘子从A柱移到C柱,但每次只能允许移动一个盘子,并且在移动过程中,3个柱子上的盘子始终保持小盘在上,大盘在下,在移动过程中可以利用其他柱子,要求打印移动的步骤和 移动的次数。
我们来分析一下这个题目,如何才能把它大事化小:
(我们用1,2,…,n表示n个盘子,称为1号盘,2号盘,…。号数大盘子就大)
      (1)当A柱子上只有一个盘子时,只需将A柱子上的一个盘子直接移到C柱子上即可;
      (2)当A柱子上有两个盘子时,先将A柱子上的1号盘子(编号从上到下)移动到B柱子 上,再将A柱子上的2号盘子移动的C柱子上,最后将B柱子上的小盘子移动到C柱子上;
      (3)当A柱子上有3个盘子时,先将A柱子上编号1至2的盘子(共2个)移动到B柱子上(需借助C柱子),然后将A柱子上的3号最大的盘子移动到C柱子,最后将B柱子上的两个盘子借助A柱子移动到C柱子上;
      (4)当A柱子上有n个盘子时,先将A柱子上编号1至n-1的盘子(共n-1个)移动到B柱子上(借助C柱子),然后将A柱子上最大的n号盘子移动到C柱子上,最后将B柱子上的n-1个盘子借助A柱子移动到C柱子上。

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
int count = 0;
void move(int i, char src, char dst)
{
    printf("第%d个盘子:%c----->%c\n",i,src,dst);
    count++;
}

void Hannuota(int n, char a, char b, char c)//a为盘子原来在的柱子,b为中间柱子,c为目标柱子
{
    if (n == 1)
    {
        move(n, a, c);//直接把a上的柱子移到目标柱子c上
    }
    else
    {
         Hannuota(n - 1,a, c, b);//把n-1个盘子从a移到b柱子上(借助柱子c)
         move(n, a, c);//上一步把这个盘子上面的n-1个盘子移到了柱子b上,这一步就把这第n个盘子直接移到目标柱子c上
         Hannuota(n - 1, b, a, c);//把在b柱子上的n-1个盘子移到柱子c上(借助柱子a)
    }

}

int main()
{
    int n = 0;
    char a = 'A';
    char b = 'B';
    char c = 'C';
    printf("请输入你要移动的盘子数>\n");
    scanf("%d", &n);
    Hannuota(n, a, b, c);
    printf("%d个盘子要移动%d次\n", n, count);
    system("pause");
    return 0;
}

二、青蛙爬楼梯
      题目:假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?
我们来分析这个问题:
1个台阶:1步——1种方法
2个台阶:2步,1+1——2种方法
3个台阶:1+1+1, 1+2, 2+1——3种方法
4个台阶:1+1+1+1, 1+1+2, 1+2+1, 2+2,2+1+1——5种方法
…………
找到规律,其实就是斐波拉契数列
或者这样分析:
1.如果起始跳一阶的话,剩余的n-1阶就有 f(n-1) 种跳法;
2.如果起始跳二阶的话,剩余的n-2阶就有 f(n-2) 种跳法;
所以f(n) = f(n-1) + f(n-2),实际结果即为斐波纳契数。
所以代码很容易就实现了:

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>

int Count(int n)
{
    if (n == 1)
        return 1;
    if (n == 2)
        return 2;
    else
        return Count(n - 1) + Count(n - 2);
}

int main()
{
    int n = 0;
    printf("请输入台阶数:\n");
    scanf("%d", &n);
    int count = Count(n);
    printf("%d阶台阶有%d种方法\n", n, count);
    system("pause");
    return 0;
}

那我们把这个问题升级一下:
如果某人可以一次性跳1~n阶,那他跳完n阶台阶有多少种跳法?
来我们分析一下:
1.如果起始跳一阶的话,剩余的n-1阶就有 f(n-1) 种跳法;
2.如果起始跳二阶的话,剩余的n-2阶就有 f(n-2) 种跳法;
3.如果起始跳三阶的话,剩余的n-3阶就有 f(n-3) 种跳法;

n.如果起始跳n阶的话,剩余的n-n阶就有 f(n-n) 种跳法;
已知一阶台阶时,跳法只有一种,f(1) = 1,二阶台阶时,跳法只有两种,所以f(2) = 1+1 = 2。
而f(2)=f(1)+ f(0); 所以f(0)=1;
第一次起跳有n种跳法,1,2,3,4,5…….n
所以f(n)=f(n-1)+f(n-2)+f(n-3)+…..+f(n-(n-1))+f(n-n)
即:
 f(n)=f(n-1)+f(n-2)+f(n-3)+…..+f(1))+f(0)
 f(n-1)=f(n-2)+f(n-3)+…..+f(1))+f(0)
 f(n-2)=f(n-3)+…..+f(1))+f(0)
等等….
以上式子可得:
f(n)=2*f(n-1)=2*2*f(n-2)=2*2*2*f(n-3)=….=2^(n-1)*f(1)=2^(n-1)

接下来代码就简单啦。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 递归解决迷宫问题是一种常见的方法。在这种方法中,我们使用递归函数来探索迷宫中的每个可能的路径,直到我们找到出口或确定没有解决方案为止。 首先,我们需要定义一个迷宫。可以使用一个二维数组来表示迷宫,其中 0 表示可以通过的位置,1 表示障碍物或墙。 接下来,我们需要定义一个递归函数,该函数将从当前位置开始探索迷宫。在每个位置上,我们检查是否已到达出口,如果是,则返回真。否则,我们尝试从当前位置向四个方向移动,并递归地调用该函数以继续探索。如果在任何方向上找到了出口,则返回真。如果没有找到出口,则返回假。 以下是一个可能的解决方案(使用 C++ 实现): ```cpp #include <iostream> using namespace std; const int N = 5; int maze[N][N] = { {0, 1, 0, 0, 0}, {0, 1, 0, 1, 0}, {0, 0, 0, 0, 0}, {0, 1, 1, 1, 0}, {0, 0, 0, 1, 0} }; bool solve(int x, int y) { if (x == N-1 && y == N-1) { // 到达出口 return true; } if (x < 0 || y < 0 || x >= N || y >= N) { // 超出边界 return false; } if (maze[x][y] == 1) { // 遇到障碍物 return false; } maze[x][y] = 1; // 标记为已访问 if (solve(x+1, y) || solve(x-1, y) || solve(x, y+1) || solve(x, y-1)) { return true; // 向四个方向递归查找 } maze[x][y] = 0; // 恢复为未访问 return false; // 没有找到出口 } int main() { if (solve(0, 0)) { cout << "迷宫有解!" << endl; } else { cout << "迷宫无解。" << endl; } return 0; } ``` 在上面的代码中,我们首先从起点 (0, 0) 开始调用 solve() 函数。在 solve() 函数中,我们按顺序检查当前位置是否为出口、是否超出边界、是否遇到障碍物。如果都不是,则标记当前位置为已访问,并向四个方向递归调用 solve() 函数以继续探索。如果在任何方向上找到出口,则返回真。如果没有找到出口,则恢复当前位置为未访问状态,并返回假。 在主函数中,我们检查 solve() 函数的返回值以确定迷宫是否有解。如果有解,则输出“迷宫有解!”;否则,输出“迷宫无解。”。 需要注意的是,这种方法可能会导致栈溢出,因为每个递归调用都会将一个新的栈帧压入堆栈中。为了避免这种情况,可以使用迭代加深搜索或其他更高级的搜索算法。 ### 回答2: 数据结构递归算法可以用于解决迷宫问题。迷宫问题是在一个矩阵中找到从起点到终点的路径。矩阵可以表示为一个二维数组,其中0表示可通行的路径,1表示墙壁或障碍物。我们需要找到一条从起点到终点的路径,路径可以相邻的上下左右移动。 使用递归算法可以很方便地解决迷宫问题。我们可以从起点开始,每次选择一个方向前进,并通过递归调用来继续探索下一步是否可行。若当前位置为终点,则找到了一条路径,返回true。若当前位置已经走过或者是墙壁,则返回false。若当前位置是可通行路径,则继续向四个方向递归调用,直到找到一条可行路径或者所有方向都走过一遍。 通过递归算法,我们可以遍历所有可能的路径,直到找到一条通往终点的路径或者确定没有可行路径为止。算法的基本思路是不断向前探索并回溯,重复这个过程直到找到结果。 递归算法在解决迷宫问题时可以使用栈来保存之前的路径,并在回溯时将路径出栈,以便返回上一步。同时,为了避免重复探索,需要使用一个二维数组来记录每个位置是否已经走过。 总之,使用数据结构递归算法可以很好地解决迷宫问题。该算法的时间复杂度取决于迷宫的大小和难度,但在一般情况下是可以接受的。 ### 回答3: 数据结构中的递归在解决迷宫问题中非常有用。迷宫问题是一个典型的寻路问题,目标是从迷宫的起点找到一条通往终点的路径。 在数据结构中,可以使用递归来解决这个问题。我们可以将迷宫看作是一个二维数组,每个元素表示一个迷宫的单元格。其中,0代表可通过的通道,1代表墙壁或障碍物。 首先,我们需要定义一个递归函数,用来找到从当前位置到终点的路径。该函数的输入参数包括当前位置的行和列,以及表示迷宫的二维数组。递归的结束条件就是当前位置已经是终点,即到达了目标位置。 在每一步递归中,我们需要检查当前位置的上、下、左、右四个方向是否可以移动。如果某个方向可以移动,我们就将下一步的位置设为该方向,并调用递归函数。如果递归函数返回真,表示找到了一条有效路径,我们就返回真;否则,我们需要回溯到上一步,并继续尝试其他方向。 在递归函数中,还需要有一个标记数组来记录已经访问过的位置,避免重复访问。每次需要访问一个位置时,我们首先检查该位置是否超出了迷宫的边界,并且该位置没有被访问过。如果满足这两个条件,我们将该位置标记为已访问,并继续递归。 如果递归函数返回真,表示找到了一条有效路径,我们可以将该路径输出或保存下来。如果递归函数返回假,并且没有其他方向可以继续尝试,表示无法找到有效路径,我们就返回假。 数据结构中的递归在解决迷宫问题上是非常高效的,因为它能够自动探索所有可能的路径,而不需要编写复杂的循环代码。通过合理的设计递归函数和标记数组,我们能够有效地解决迷宫问题,并找到一条通往终点的路径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值