一维热传导方程的差分方法

本文详细介绍了如何使用四种差分格式——向前差分、向后差分、Crank-Nicolson格式和Richardson格式,来求解一维热传导方程,并给出了每个格式的具体矩阵表达式。通过这些格式,可以数值求解方程的解,并与精确解进行比较,理解其适用性和精度。
摘要由CSDN通过智能技术生成

用四种差分格式求解下列方程:

{ u t = u x x , x ∈ ( 0 , 1 ) u ( x , 0 ) = s i n π x u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , 0 < t ≤ 10 \begin{cases} &u_t=u_{xx},&x\in(0,1)\\ &u(x,0)=sin\pi x\\ &u(0,t)=0,u(1,t)=0,&0<t\leq10 \end{cases} ut=uxx,u(x,0)=sinπxu(0,t)=0,u(1,t)=0,x(0,1)0<t10
其中方程精确解为: u ( x , t ) = e − π 2 t s i n ( π x ) . u(x,t)=e^{-\pi^2t}sin(\pi x). u(x,t)=eπ2tsin(πx).

  1. 向前差分格式:
    u j n + 1 − u j n τ = u j − 1 n − 2 u j n + u j + 1 n h 2 \frac{u^{n+1}_j-u^n_j}{\tau}=\frac{u^{n}_{j-1}-2u^{n}_{j}+u^{n}_{j+1}}{h^2} τujn+1ujn=h2uj1n2ujn+uj+1n
    r = τ h 2 r=\frac{\tau}{h^2} r=h2τ, 则有
    U j n + 1 = r U j − 1 n − ( 1 − 2 r ) U j n + r U j + 1 n . U^{n+1}_j=rU^{n}_{j-1}-(1-2r)U^{n}_{j}+rU^{n}_{j+1}. Ujn+1=rUj1n(12r)Ujn+rUj+1n.
    U n + 1 = C 1 U n U^{n+1}=C_1U^n Un+1=C1Un, 其中
    S = ( 0 1 1 ⋱ ⋱ ⋱ ⋱ 1 1 0 ) . S=\begin{pmatrix}0&1& & \\1& \ddots&\ddots &\\ & \ddots&\ddots &1\\ & &1 &0 \end{pmatrix}. S= 01111
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值