问题描述
小明这些天一直在思考这样一个奇怪而有趣的问题:
在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是:
如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增排序后能得到一个长度为R-L+1的“连续”数列,则称这个区间连号区间。
当N很小的时候,小明可以很快地算出答案,但是当N变大的时候,问题就不是那么简单了,现在小明需要你的帮助。
输入格式
第一行是一个正整数N (1 <= N <= 50000), 表示全排列的规模。
第二行是N个不同的数字Pi(1 <= Pi <= N), 表示这N个数字的某一全排列。
输出格式
输出一个整数,表示不同连号区间的数目。
样例输入1
4
3 2 4 1
3 2 4 1
样例输出1
7
样例输入2
5
3 4 2 5 1
3 4 2 5 1
样例输出2
9
区间最大-区间最小==R-L 则区间连号
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int main(int argc, char** argv) {
int n,a[50010];
while(cin>>n){
int i,j,count=0;
for(i=1;i<=n;i++)
cin>>a[i];
for(i=1;i<=n;i++)
{
int maxx=0,minn=n;
for(j=i;j<=n;j++)
{
maxx=max(maxx,a[j]);
minn=min(minn,a[j]);
if(maxx-minn==j-i) count++;
}
}
cout<<count<<endl;
}
return 0;
}