自然语言处理:NLP的研究内容简介

关于NLP的研究领域,没有一个非常严格的定义进行限定,笼统的说,那些尝试让机器和人类用语进行交互的研究都属于NLP研究的范畴,例如信息提取、情感分析、翻译、问答、推理等。详细地列举出所有研究内容并不现实也没有必要,因为对于科学而言,唯一不变的就是一直在变化。这里只是非常简单总结一下当前认知到的,方便日后回顾。

现阶段搜索引擎还主要是检索网络上的文本信息然后返回相关的网页,虽然随着知识图谱技术的加入,已经具备轻微的推理能力,但是和人类的推理与整合信息的能力相比仍是微不足道的。例如,搜索姚明的女儿叫什么时,由于知识图谱的加持,可以直接返回我们想要的结果。但是当搜索姚明的儿子叫什么时就无能为力了,我们期望搜索引擎明确的告诉我们:“姚明暂时还没有儿子”,而不是让我们自己通过阅读返回的网页来获取这个结论。

语义消歧,要获取歧义词的准确信息,需要依赖这个词汇出现的上下文,可以利用相邻词汇有相近含义这样一个简单的原理;

指代消解,确定代词或名词短语指的是什么;

语义角色标注,确定名词短语如何与动词相关联(如施事,受事,工具等);

文本含义理解,需要用到推理,例如,假设我们想要证明: A被B击败了。有一段相关的文字描述:A在某竞赛中入围,B将对手C推到第三位,以微弱优势赢得冠军。通过简单的阅读和推理,我们很容易得出的结论是“否”,但是让机器做这件事就没那么简单了,不仅要提取出文本中的角色,还要有一定的推理能力;

机器翻译,从可以获取到的双语资料中得到大量的相似文本。通过对应的双语词典,就可以自动配对成句子。这个过程叫做文本对齐。一旦我们有一百万或更多的句子对,就可以检测出相应的词和短语,并建立一个能用来翻译新文本的模型;

自动生成语言,在解决自动语言理解的基础上,可以让机器自动生成语言,主要的应用是自动问答和机器翻译;

人机对话,最后,所有这一切研究都要回归于这一目标,即可以实现人机之间顺畅的交流沟通,让机器为人类服务。关于人机对话,想必图灵测试不少人都听过:一个响应用户文本输入的对话系统能否表现的自然到我们无法区分它是人工生成的响应。现在商用的对话系统泛化能力其实是非常弱的,但是在特定的领域还是可以起到一定作用的,例如淘宝机器客服还有电影咨询客服。

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值