- 博客(18)
- 收藏
- 关注
原创 PyTorch 数据加载详解:Dataset 与 DataLoader 的核心原理与实战
本文深入解析 PyTorch 数据管道的核心模块 torch.utils.data。通过“厨师与服务员”的形象比喻,阐述了负责单样本管理的 Dataset 与负责批量加载的 DataLoader 之间的分工与协作。文章详细讲解了自定义 Dataset 的 __len__ 与 __getitem__ 接口实现,剖析了 DataLoader 的 batch_size、shuffle 及多进程 num_workers 等关键参数配置,并结合完整的图像数据集代码示例,帮助读者构建高效、稳定的深度学习数据输入流。
2025-12-08 12:28:16
807
原创 深入理解 PyTorch 自动求导:Autograd 核心机制与语法详解
本文深入解析 PyTorch 的核心自动求导系统 Autograd。文章详细阐述了动态计算图的工作原理,重点讲解了 requires_grad 属性、backward() 反向传播方法、.grad 梯度属性以及 no_grad 上下文管理器的使用技巧。通过线性回归的完整代码示例,直观展示了从前向传播、计算损失到反向更新参数的全流程,帮助读者彻底掌握 PyTorch 梯度计算与优化的核心机制。
2025-12-08 12:08:16
702
原创 PyTorch 核心数据结构:Tensor 详解与操作指南
本文系统介绍了 PyTorch 核心数据结构 Tensor。内容涵盖 Tensor 的创建、属性查看、索引切片及形状变换(如 reshape)等基础操作。重点详解了各类数学运算(逐元素、线性代数)、广播机制规则,以及与 NumPy 的互换和 CPU/GPU 设备移动方法。该文档旨在为 PyTorch 开发者提供详尽的语法参考和操作指南。
2025-12-02 23:11:15
917
原创 PyTorch 万字长文深度解析:核心架构原理与非线性激活机制
本文深入解析 PyTorch 框架的底层逻辑。通过“机器组装”比喻,将 Tensor、Autograd、nn 等核心模块映射为从原材料到调校引擎的完整训练系统。明确了 PyTorch 专注模型构建与 Pandas/NumPy 负责数据处理的分工边界。重点探讨激活函数的本质,阐述非线性变换如何赋予模型“万能逼近”能力,并提供了隐藏层(如 ReLU)与输出层(如 Softmax)的具体选型指南,为构建高效神经网络提供理论依据与实践策略。
2025-12-02 22:53:25
689
原创 全景解析:机器学习核心评价指标详解(分类、回归与聚类)
训练出的模型究竟表现如何?仅看准确率往往会产生误导。本文系统性地梳理了机器学习三大任务的核心评价指标:分类模型(从混淆矩阵到 F1-Score 的权衡)、回归模型(MAE、RMSE 与 R² 的差异分析)以及聚类模型(轮廓系数等无监督评估方法)。文章不仅深入浅出地解释了各指标的数学原理与适用场景(如数据不平衡处理),还提供了基于 Scikit-learn 的 Python 代码示例,助你快速上手实战,科学量化模型性能,在实际业务中做出正确决策。
2025-12-01 15:16:05
625
原创 一文读懂机器学习损失函数:从MSE到交叉熵
本文深入解析了机器学习中指导模型优化的核心指标——损失函数。文章首先通过老师与学生的生动比喻,直观阐释了损失函数的工作机制。随后,详细对比了分类任务(如二元/多类交叉熵)与回归任务(如MSE、MAE、Huber)中主流损失函数的数学原理、优缺点及对异常值的敏感度。最后,文章提供了 Scikit-learn 和 PyTorch 的代码实现示例,帮助开发者根据具体场景(如数据是否包含噪音、标签是否互斥)选择最合适的损失函数,从而有效提升模型预测性能
2025-12-01 14:30:06
1201
原创 解锁数据洞察:Matplotlib 核心绘图技巧与 Pandas 联动实战
Matplotlib 是 Python 数据可视化领域的奠基石。本文不只是简单的函数罗列,而是从“一切皆对象”的核心理念入手,带你彻底搞懂 Figure 与 Axes 的底层逻辑,掌握官方推荐的面向对象绘图接口。内容涵盖从基础折线图到热力图的绘制、细节定制、多子图布局及图片导出,并深入讲解了与 Pandas 的 .plot() 方法的高效联动。通过本指南,你将能够灵活创建高质量图表,并为未来学习 Seaborn 等高级可视化库打下坚实基础。
2025-11-30 12:31:14
814
原创 Pandas 核心技术指南:从入门到数据分析实战(万字长文解析)
本文是 Python 核心数据分析库 Pandas 的全面教学指南。文章从其核心数据结构 DataFrame 和 Series 入手,系统讲解了数据读取、查看、索引、清洗(缺失值与重复值处理)、转换、分组聚合及数据可视化等关键操作,是高效处理和分析表格数据的必备手册
2025-11-30 12:15:45
1343
原创 万字小长文Numpy语法介绍
本文全面介绍了 Python 科学计算的基石——NumPy 库。文章从 NumPy 的核心数据结构 N 维数组 (ndarray) 出发,阐述了其相比原生 Python 列表在性能和内存上的巨大优势。重点讲解了向量化计算与广播机制,这是 NumPy 实现高性能运算的关键。内容涵盖了数组的创建、高级索引与切片(特别是布尔索引)、通用函数、数学与统计方法,以及在线性代数和信号处理中的应用。掌握 NumPy 是通往 Pandas、Scikit-learn 等高级数据分析工具的必经之路。
2025-11-29 12:35:04
971
原创 两万字长文带你快速入门并掌握机器学习
本文系统阐述了机器学习的完整实施框架,旨在为AI学习者奠定基础。内容涵盖从问题定义、数据清洗与EDA、特征工程,到模型选择、训练(含损失函数与梯度下降)、评估及部署监控的全流程。文章深入解析了分类、回归与聚类三大类算法及其评价指标(如精确率、F1分数),并重点讲解了过拟合处理(正则化)、数据不平衡(SMOTE)等关键技术。通过结合Scikit-learn与PyTorch代码示例,提供了从理论到实践的详细指导。
2025-11-29 12:05:08
909
原创 Conda环境配置指南,只看这一篇就够了!
本文介绍了使用Conda管理Python虚拟环境的完整指南。主要内容包括:虚拟环境的隔离性和可重复性优势;如何创建指定Python版本和依赖包的环境;环境激活/停用操作;包管理(安装、更新、删除);查看和删除环境的方法;以及通过YAML文件导出/导入环境配置以实现环境复现。文章特别强调了跨系统迁移时的注意事项,并详细说明了如何更新现有环境配置。适用于数据科学和软件开发中管理项目依赖的场景。
2025-11-28 18:33:20
944
原创 项目开发过程遇到的git问题
Git应用问题解决方案摘要 本文针对Git使用中的常见问题提供了详细解决方案: 分支历史不同问题:通过创建新本地仓库、强制覆盖分支或新建分支,解决fork仓库与原仓库无共同历史导致的PR错误 分支合并问题:区分常规合并(先检查冲突)与不同历史合并(使用reset强制覆盖) 提交历史清理:通过软回退(reset --soft)将多个commit合并为一个干净提交 远程仓库设置:使用fetch获取远程数据后,通过remote添加跟踪,再merge应用更改 所有方案均包含详细命令行操作步骤和原理说明,适用于中高级
2025-11-28 18:28:52
627
原创 FastAPI实现JWT认证的完整指南(万字长文)
JWT 是一个开放的行业标准,它定义了一种紧凑且自包含的方式,用于在各方之间安全地传输信息。本文详细介绍:1. JWT的定义组成;2. fastAPI实现 JWT
2025-11-25 11:43:05
833
原创 使用Vercel部署个人网站详细教程,只看这一篇就够了!
内容:1)Vercel平台静态/动态网站托管;2)详细部署步骤:注册Vercel、导入GitHub项目、自动构建;3)进阶配置:通过Cloudflare设置DNS解析、绑定自定义域名;4)特殊场景处理:使用Git子模块管理内容仓库,并配置自动化更新机制。方案适用于个人博客等静态网站部署,利用Vercel的免费配额即可实现高效托管。
2025-11-25 11:20:08
2359
原创 Python合集第二集:基础语法(判断、循环)
对于integer: range(2)表示从 0 开始到 1 结束,即C++中的for(int i = 0;i++), range(1,4,1)表示从1开始到3结束,步长为1。2、转义符号 \t 可以使多行字符串自动对齐//左对齐 一个 \t 默认是一个tab的缩进内字符串对齐的功能才会生效,太长不行。待数据处理集严格来说是序列类型,即序列内容可以被依次取出值的变量类型,包括:字符串、List、tuple。即存在三个参数:开头、结尾、步长 --- start 、 end、 step,= >=
2024-10-17 17:47:06
737
原创 高精度算法(C++)
处理思路: 先建立一个临时数组保存每一位上的数字之和, 例如 789 + 56 在个位、十位、百位上分别为15、13、7 , 接下来如果每一个数字位上大于10,那就在下一位上 +1。而且,如果最高位大于10,那最终的输出长度要 +1, 例如 8 + 9 = 17,显然输出数字的长度是 2。第二种处理方式: 利用栈的先进后出结构做一个顺序栈,进行数据的读取。高精度加法: 即小学中的 十进一 例如 789 + 56 , 个位上 9+6 = 15, 进 1 余 5,因此可以模拟这个过程进而实现 高精度加法。
2024-10-05 23:12:38
628
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅