成功的电驱动开发本质上是多物理场的。工程师需要解决 相互交织,经常相互冲突的特性,如热与机械要求、电磁 性能、疲劳耐久、噪声与振动控制,以及润滑要求等。
得益于多物理场仿真技术,工程师能预测多个设计备选方 案在所有可能场景下的行为。运用多物理场仿真技术,工 程师能以更快速度做出最佳决策,从而在验证最终原型之 前,开发出最高品质的电驱动。
多学科优化
在电磁性能、强度与刚度之间进行最优权衡
要开发出优秀的,甚至是可行的电机设计,需要分析大 量的设计选项,掌握每个参数对瞬息万变且经常相互冲 突的KPI的影响。我们使用统一的参数化模型,整合电 磁学科和结构学科,提供高效的设计空间探索与优化工 作流程。
热管理
控制热量,保障可靠性能
油冷是为电动机定子绕组散热的方法之一。它提出了一 个复杂的流体动力学与热传递仿真难题,因为动力学与 热流的尺度相差过大。我们展示出一种高保真多相流体 仿真分离流程,先捕获冷却剂的状态,继而用热仿真预 测结构部分中的瞬时温度。
用热可靠性维持高功率密度
可靠的电力电子系统对保障电动汽车的正常运转至关重 要。我们介绍如何确定电力电子系统的具体电气特征和 热特征。通过将计算电气组件内平均功率损耗的1D系统 行为模型与3D流体共轭热传递分析进行结合,就能准确 地确定电力模块的空间温度分布。
减轻噪声与振动
为乘客提供静谧乘坐体验
准确预测电驱动系统的振动与噪声需要进行多学科仿真。 我们提供一种完美整合电磁仿真、多体仿真和声学仿真 的耦合框架。自动更新模型、自动执行流程,能显著地 节省分析多个备选设计方案所需的时间与工作量。
润滑
延长使用寿命
为了正确地润滑轴承和齿轮箱等关键组件,电驱动系统 的油位需要优化,以提供充分的表面覆盖和最小的诱导 阻力矩。我们介绍了如何使用流体仿真对润滑性能进行 评估。格子玻尔兹曼(Lattice Boltzmann)技术能高保真地 预测瞬态多相流的流动。