- 博客(53)
- 收藏
- 关注
原创 深度学习------U-net系列算法
本文介绍了U-net系列网络在图像分割中的核心原理与应用。U-net凭借其U型架构(编码-解码+特征拼接)成为经典,编码路径压缩特征,解码路径还原尺寸,通过特征拼接结合细节与语义信息实现精准分割。U-net++通过多路径特征融合和深度监督进一步提升精度和稳定性。U-net+++则更灵活地整合不同尺度特征。对于新手,关键在于理解U型核心架构、特征拼接的重要性,并根据任务需求选择版本:简单任务用U-net,高精度要求用U-net++,复杂场景尝试U-net+++。掌握这些核心逻辑能够有效入门图像分割领域。
2025-10-31 11:45:01
835
原创 深度学习------图像分割项目
图像分割是给每个像素分类的计算机视觉任务,比目标检测更精细,主要分为语义分割(分类不区分个体)、实例分割(区分个体)和全景分割(综合前两者)。常用数据集包括VOC(入门)、Cityscape(街景)和COCO(复杂场景)。核心技术是转置卷积,用于将压缩的特征图还原至原图尺寸。评估指标包括像素精度(PA)和交并比(IoU/mIoU)。建议新手从理解基本概念开始,明确任务类型后再选择对应数据集和方法。
2025-10-29 13:42:24
694
原创 深度学习------《第三篇》
本文探讨了使用YOLOv5进行口罩检测训练时需掌握的基础知识。文章指出,许多新手直接调参往往效果不佳,关键在于理解深度学习基础概念。重点分析了三个核心环节:数据预处理(图像尺寸统一、数据增强、标签格式处理)、模型结构(卷积层、激活函数、损失函数)和训练过程(批次迭代、学习率调度、EMA)。作者以实际案例说明,只有吃透这些基础原理,才能真正理解代码逻辑,避免常见错误,提高模型检测精度和稳定性。
2025-10-28 15:04:56
488
原创 深度学习------《YOLOv5源码》
本文拆解了YOLOv5网络结构的3个核心模块:Focus模块通过分块拼接降低计算量;BottleneckCSP采用分块两路计算减少冗余;PAN结构实现多尺度特征双向融合。文章推荐使用Netron+ONNX工具可视化网络结构,并建议新手先理清整体架构,再重点理解核心模块的设计思想。通过分析各模块的工作原理,揭示了YOLOv5在保持精度的同时提升速度的关键技术,为初学者提供了清晰的学习路径。
2025-10-28 14:58:00
956
原创 深度学习------YOLOv5《第二篇》
本文深入解析YOLOv5中马赛克数据增强的核心实现。该技术通过拼接图片形成大训练样本,提升目标密度和场景多样性,降低小目标漏检率。关键点包括:随机生成拼接中心坐标;计算图像放置区域和偏移量;将目标框坐标从小图映射到大图;边界修正和二次增强。文章详细剖析了图像拼接逻辑、标签坐标转换公式(padw/padh偏移量计算),以及PyTorch特有的实现方式。该增强技术通过;拼接-坐标映射-边界修正流程,显著提升模型训练效果。
2025-10-24 16:04:06
905
原创 深度学习------YOLOv5《第一篇》
《YOLOv5口罩检测的数据准备术》摘要:训练YOLOv5进行口罩检测的关键在于数据预处理。首先需统一图像尺寸,采用letterbox方法保持比例填充,避免变形;其次需规范标注格式,使用相对坐标比例确保标签通用性,并进行严格的质量检查。数据增强环节通过Mosaic拼图、亮度/色调调整、小角度旋转等手段提升模型鲁棒性,但需控制增强幅度以防失真。采用缓存机制可加速数据加载过程。这些预处理步骤如同为模型打造优质的学习资料,直接影响最终的检测精度和泛化能力。
2025-10-23 19:19:44
706
原创 深度学习------YOLOv4
YOLOv4实战笔记:单GPU训练的高精度目标检测方案 YOLOv4通过BOF和BOS两大模块优化,在保持单GPU训练的优势下显著提升检测性能。BOF模块包含Mosaic数据增强(提升小目标检测率8-17%)、DropBlock正则化(减少过拟合7%)和CIoU损失函数(加速收敛1倍)等;免费午餐;技术;BOS模块则通过CSPNet(训练提速33%)、PAN特征融合(小目标检测率+15%)和SPP多尺度池化等技术进一步提升精度。相比YOLOv3,mAP提高近10个百分点,在COCO数据集
2025-10-20 16:06:56
851
原创 深度学习------YOLOV3
YOLOv3通过三大核心改进显著提升了小目标检测和整体精度:1)采用多尺度特征融合(52×52/26×26/13×13三级特征图),实现大小目标兼顾检测;2)引入残差网络Darknet-53,通过跳层连接解决深层网络梯度消失问题;3)优化先验框设计(9种尺寸)并改用Logistic分类,提升定位精度和多标签识别能力。相比前代,v3在保持实时性的同时将mAP提升近10个百分点,其创新主要在于对经典技术(多尺度、残差等)的系统性整合而非框架颠覆。学习重点应把握多尺度分工、残差机制和先验框优化三大核心改进。
2025-10-17 19:14:42
742
原创 深度学习------YOLOV1和YOLOV2
本文解析了YOLO目标检测算法从v1到v2的核心改进。YOLOv1开创性地将检测任务转化为网格回归问题,实现实时检测,但仍存在小目标漏检、定位精度不足等问题。YOLOv2通过引入锚框+K-Means聚类、批量归一化、细粒度特征融合和多尺度训练等关键技术,显著提升了检测精度和速度。文章重点比较了两个版本在算法设计、损失函数和网络结构上的差异,并建议新手从理解v1的网格回归机制入手,再逐步掌握v2的优化思路。全文通过实例说明各改进点的实际效果,为初学者提供了清晰的学习路径。
2025-10-16 14:52:32
669
原创 深度学习------目标检测项目
目标检测是计算机视觉中的关键任务,需要同时完成物体识别和定位。本文介绍了5个核心概念:边界框(标定目标位置)、交并比(评估定位精度)、锚框(预设检测基准)、单/双阶段算法(精度与速度权衡)以及训练/推理流程。同时强调了数据处理的重要性,包括精确标注和带框数据增强。相比图像分类,目标检测更复杂,但掌握这些基础知识能帮助新手快速入门。文章还提供了实际项目中的代码示例和常见问题解决方案,为初学者梳理了清晰的学习路径。
2025-10-15 14:20:27
643
原创 深度学习------专题《使用模型和集成方法》
这篇深度学习入门指南总结了从环境配置到模型集成的关键预备知识:1. 工具准备:介绍了PyTorch核心模块(nn/optim)和辅助库(numpy/torchvision)的用途;2. 模型构建:通过CNNNet、LeNet等实例讲解卷积层、池化层的组合逻辑;3. 数据处理:详述CIFAR10数据集的增强变换和DataLoader分批加载;4. 集成方法:展示多模型投票如何提升预测准确率。文章强调理解这些基础模块(如张量形状变化、数据增强原理)对后续复杂任务的重要性,为深度学习实践打下坚实基础。
2025-10-14 16:11:15
898
原创 深度学习------专题《神经网络完成手写数字识别》
摘要:本文分享了使用PyTorch实现手写数字识别的深度学习入门实战经验。通过MNIST数据集,详细介绍了从数据准备、模型构建(包含两层隐藏层和BatchNorm)到训练验证的全过程。关键点包括:使用ReLU激活函数和Softmax输出层,采用交叉熵损失和SGD优化器,实现训练损失可视化。该案例帮助初学者理解神经网络的工作原理,掌握quot数据处理→模型构建→训练验证quot的核心流程,为后续更复杂的深度学习项目打下基础。
2025-10-13 14:21:18
838
3
原创 深度学习------专题《图像处理项目》终!
本文分享了使用PyTorch进行CNN模型参数可视化和训练调优的实战经验。作者开发了一个类似Keras的model.summary()函数,通过钩子(hook)机制记录各层输入输出形状、参数数量等关键信息,帮助理解模型结构。在训练优化方面,对比了SGD和Adam优化器的表现,强调了梯度清零(optimizer.zero_grad())的重要性,并分析了损失曲线的学习状态。最后提出后续优化方向,包括增加训练轮数、使用TensorBoard可视化等,强调了深度学习需要深入理解模型和训练过程。
2025-09-28 11:24:28
938
原创 深度学习------专题《图像处理项目》下
本文介绍了CIFAR-10分类模型测试与优化过程。首先通过测试集评估模型整体准确率为66%,并发现模型对汽车(82%)识别较好,但对猫(45%)等细节多的类别表现欠佳。随后采用全局平均池化(GAP)替代全连接层,使参数量减少90%的同时准确率提升至70%。文章强调分类模型需细粒度评估,并验证了GAP在简化模型结构和防止过拟合方面的优势,为后续针对性优化(如数据增强)提供了方向。整个实验过程展现了模型性能诊断与优化的典型思路。
2025-09-27 15:42:06
768
原创 深度学习------专题《图像处理项目》
本文详细记录了使用PyTorch实现CIFAR-10图像分类的完整流程。从数据预处理(transforms标准化)、Dataset加载到CNN网络搭建(两层卷积+池化+全连接),再到训练过程中的损失函数选择、优化器调参等关键步骤。作者分享了实际踩坑经验,如忘记梯度清零导致训练失败、数据标准化对收敛速度的影响等。最终模型测试准确率约50%,并提出了增加训练轮数、优化网络结构等改进方向。文章为深度学习初学者提供了从理论到实践的系统指导,特别强调了数据可视化验证和训练细节的重要性。
2025-09-26 16:42:21
1066
原创 深度学习------图像分类项目
本文分享了图像分类项目的学习经验,重点梳理了三个核心内容:1)图像分类的三个层次(通用分类、细粒度分类、实例级识别)及各自特点;2)关键评估指标(准确率、精确率、召回率、F1)的选择与应用场景;3)解决样本不足的实用方案(迁移学习和数据增强)。作者通过自身踩坑案例,强调新手应重点掌握评估指标和样本增强技术,建议从基础分类任务入手循序渐进。全文提供了从理论到实践的完整学习路径,对初学者具有指导意义。
2025-09-25 13:45:53
531
原创 深度学习------Pytorch数据处理工具箱
本文介绍了PyTorch数据处理的核心工具及标准化流程。这些工具的组合使用可显著简化从数据准备到模型训练的全过程。
2025-09-24 16:40:40
797
原创 深度学习------Pytorch神经网络工具箱
本文总结了搭建神经网络的实用技巧,重点介绍了PyTorch的核心组件和工具。系统性地讲解了神经网络的四大核心组件(层、模型、损失函数、优化器)及其作用,并对比了nn.Module和nn.functional两大工具的特点与适用场景。文章还提供了三种构建模型的具体方法(继承nn.Module、使用nn.Sequential、结合模型容器),以MNIST手写数字识别为例详细说明实现代码,并给出不同复杂度的模型选择建议。最后作者强调打印模型结构查错的重要性,建议新手从简单模型入手逐步提升复杂度。
2025-09-22 15:24:35
806
原创 深度学习------卷积神经网络
本文分享了学习卷积神经网络(CNN)的入门笔记,重点对比了CNN与多层感知机(MLP)处理图像的差异。作者通过具体案例说明MLP将图像展平为向量会丢失空间信息,导致参数量过大且识别效果差;而CNN通过"平移不变性"和"局部性"原则,像人类视觉一样分层处理图像。文章详细解析了CNN的核心组件:卷积层通过参数共享提取特征,池化层降低维度保留关键信息,并介绍了从LeNet到VGG的架构演进。最后作者强调CNN能自动学习分层特征,计划动手实践LeNet模型来巩固理解。
2025-09-19 14:12:27
752
原创 深度学习------多层感知机
本文结合入门学习经历,从感知机入手,先介绍其原理及实现与门、或门等简单逻辑门的方法,再点出其 “线性不可分” 的局限性 —— 无法实现异或门。由此引出多层感知机,讲解其通过增加隐藏层组合特征、搭配激活函数(如 ReLU、sigmoid)提供非线性能力,从而解决非线性问题的核心逻辑。还分享实战细节:隐藏层数量与神经元个数的超参数选择思路,前向传播算预测、反向传播调参数的训练流程,以及用验证集、K 折交叉验证、权重衰减等应对过拟合 / 欠拟合的方法。
2025-09-18 16:17:20
712
原创 深度学习------线性回归和softmax回归
本文结合入门学习经历,拆解深度学习中线性回归与 Softmax 回归两大基础模型。线性回归适用于房价预测等 “连续值估算” 任务,核心是 y=Xw+b 公式,通过平方损失衡量误差,依赖梯度下降优化参数,需重点调整学习率与批量大小;Softmax 回归针对手写数字分类等 “离散类别判断”,借 Softmax 运算将输出转为概率,用交叉熵损失优化,输出层神经元数需匹配类别数。文章明确两者适用场景差异,计划用 PyTorch 动手实践,帮助入门者清晰区分模型用法,避免混淆。
2025-09-17 15:28:26
1081
原创 深度学习------预备知识
本文结合入门学习经历,从工业文明演进切入,点明人工智能时代已融入生活(如智能闹钟、人脸识别等)。通过 “唤醒小爱同学” 的案例,厘清人工智能与机器学习的关系,拆解机器学习 “数据、模型、目标函数、优化算法” 四大核心组件,解释典型训练过程。还介绍了监督学习(回归、分类等)、无监督学习、强化学习等任务类型,分析深度学习因数据量激增与 GPU 算力普及而爆发的原因,提及 ImageNet、AlphaGo 等案例,并说明选择 PyTorch 作为入门工具的理由,帮助新手从生活逻辑理解深度学习基础。
2025-09-16 13:44:30
925
原创 机器学习--支持向量机
这篇文章深入浅出地讲解了支持向量机(SVM)的核心原理:通过寻找使间隔最大化的最优超平面来实现分类。作者从直观理解入手,逐步拆解关键概念如间隔、支持向量、优化目标等,并介绍了软间隔和核函数等进阶技巧。文章强调SVM“关注关键样本”的极简主义思想,以及数学推导如何服务于解决实际问题。整体内容条理清晰,既有理论深度又保持了可读性,适合机器学习初学者理解SVM的本质思想。
2025-08-26 13:49:34
1060
原创 机器学习--朴素贝叶斯
本文记录了机器学习中朴素贝叶斯算法的学习过程,从基础的贝叶斯思想切入,通过 “摸球”“校园性别与着装” 等案例,清晰拆解正向概率与逆向概率的区别,推导贝叶斯公式核心逻辑 —— 用先验概率、似然概率结合观测信息计算后验概率。进而讲解朴素贝叶斯的 “朴素假设”(特征独立),并结合拼写纠正(如判断 “tlp” 应为 “top” 还是 “tip”)、垃圾邮件分类(通过邮件单词判断是否为垃圾邮件)两个实例,说明其实际应用原理。还介绍了适配不同数据类型的三种朴素贝叶斯模型(多项式、高斯、伯努利)的适用场景与关键参数。
2025-08-25 11:30:19
729
原创 机器学习--线性回归
这篇笔记分享了作者学习线性回归的入门心得。线性回归通过寻找最佳拟合直线(y=wx+b)来预测目标值,核心算法是最小二乘法。文章解释了均方误差(MSE)和R²等评估指标,并展示了用加州房价数据实战的过程:包括数据拆分、归一化处理、建模评估等步骤。作者还总结了线性回归的优缺点——简单高效但只能处理线性关系,并提供了完整Python实现代码(含中文显示技巧)。最后强调即使是简单模型也能解决实际问题,为机器学习入门提供了实用参考。
2025-08-22 13:04:31
655
原创 机器学习--聚类算法、集成算法
本文探讨了机器学习中的两种重要算法:聚类算法和集成算法。聚类算法通过;物以类聚原理实现无监督分组,以k均值算法为代表,使用距离度量相似度,擅长处理规则分布的数据。集成算法则通过组合多个弱学习器提升性能,包括Bagging(如随机森林)、Boosting(如AdaBoost)和Stacking三种主要方法。文章指出,聚类算法擅长发现数据内在结构,而集成算法通过团队协作实现1+1>2的效果,两者都体现了机器学习中化繁为简的智慧。掌握这些算法能为处理复杂数据问题提供有效工具。
2025-08-21 14:32:09
1037
原创 机器学习--数据预处理
本文介绍了机器学习中数据预处理的关键技术。主要内容包括:1)数据清洗(缺失值处理、异常值检测和重复值删除);2)数据变换(归一化和标准化)。通过Python代码示例展示了具体实现方法,强调数据预处理是提升模型性能的重要基础工作。文章以通俗易懂的方式总结了数据预处理的实用技巧,适合机器学习初学者参考实践。
2025-08-20 12:33:29
641
原创 机器学习--决策树2
决策树的进化之路:从ID3到CART的算法优化 决策树算法经历了从ID3到C4.5再到CART的演进过程,逐步解决了前代算法的局限性。ID3采用信息增益划分节点,但容易偏好多值特征;C4.5引入增益率进行平衡;CART则改用计算更简单的基尼指数。针对连续值特征,决策树通过离散化处理实现有效划分。此外,预剪枝和后剪枝技术能有效防止过拟合。实际应用中,合理设置criterion、max_depth等参数对模型性能至关重要。这些算法改进体现了机器学习追求简单而准确的核心思想。
2025-08-19 13:45:29
643
原创 机器学习--决策树
决策树:用问答逻辑做选择的智慧 决策树是一种模拟人类决策过程的机器学习模型,通过一系列问答将复杂问题拆解成简单判断。它的核心是"搭树"过程:先计算每个特征的信息增益(基于熵减少程度),选择最能区分数据的特征作为节点,再逐层细分直到得出明确结论。这种模型既可用于分类(如判断是否打球)也能用于回归预测,其优势在于决策过程透明可解释,与人类思考方式高度相似。从日常选择到数据分类,决策树都能帮助我们理清思路,将混乱信息转化为清晰的判断路径。
2025-08-18 14:14:17
674
原创 机器学习---KNN算法
KNN(K最近邻)算法通过“邻居投票”机制进行分类预测,其核心逻辑类似于根据周围人的选择判断餐厅好坏。文章以天气预测为例,详细解析KNN的运作流程,包括数据准备、距离度量、K值选择和结果评估。该算法优势在于无需训练、可解释性强,但存在计算量大、维度灾难等局限。优化方法包括降维、索引加速和加权投票。KNN适用于小规模数据、快速验证和需高解释性的场景,是机器学习入门的经典算法,体现了“复杂问题源于简单观察”的底层逻辑。文末还通过学生兴趣预测实验,直观展示了KNN的优缺点。
2025-08-15 10:57:04
576
原创 机器学习----绪论
这篇机器学习入门文章系统性地介绍了机器学习的基本概念和方法。首先解释了机器学习的本质是让机器从经验数据中自主总结规律,并阐述了三个关键要素:具体任务、评价标准和数据学习能力。然后详细讲解了专业术语如数据集、样本、特征等,区分了训练集和测试集的作用。全文通过生动的生活案例(如下棋、西瓜判断等)帮助读者理解机器学习的核心思想。
2025-08-14 13:17:59
651
原创 总结《数据分析》!!!Python 数据分析入门到实战:我用代码搞定数据的那些事儿
Python在数据分析领域凭借完整的工具链脱颖而出。NumPy提供高效的数组计算,支持广播机制加速运算;Pandas简化表格处理,具备强大的数据清洗和查询功能;Matplotlib和Seaborn实现从基础到精美的可视化。通过实战案例展示了从数据爬取、处理到可视化的完整流程,强调实践的重要性。这套"NumPy+Pandas+可视化"组合拳,让复杂的数据分析变得简单高效,是数据分析师的得力工具。
2025-08-13 11:22:04
947
原创 双 11 美妆数据深扒:用 Python 解锁销量、价格与消费的隐藏规律
本文通过分析2016年双11淘宝2.7万条美妆数据,揭示了三个反常识发现:1)低价商品销售额占比最高,是高端品牌的3倍;2)护肤品销量占比超70%,清洁和补水类最受欢迎;3)双11当天销量不增反降,消费者倾向提前购买。研究还发现妮维雅占据70%男士市场,男士唇膏意外走俏。数据暴露出相宜本草可能存在异常刷单行为(28单/评论)。建议商家重视预热期营销,聚焦清洁补水类产品,开发男性美妆市场。
2025-08-12 15:20:53
583
原创 从网页到图表:我用 Python 扒了大学排名,发现了这些规律
本文分享了用Python爬取国内大学排名数据并进行可视化分析的过程。首先通过requests和BeautifulSoup爬取高三网上的820所大学数据,存储为CSV文件。接着用pandas处理数据中的空值问题,介绍了删除、文字填充、均值/中位数填充四种方法。最后用matplotlib绘制了三种图表:垂直柱形图、水平柱形图和饼图,直观展示不同星级高校的分布情况(如1星学校占比31.7%)。整个实践过程展现了从数据采集到分析可视化的完整链路,为初学者提供了数据分析的实用范例。
2025-08-11 11:36:55
599
原创 用 Seaborn 画图的一天:原来数据可视化可以这么 “养眼“!
Seaborn 让数据可视化变简单了!作为 Matplotlib 的颜值升级版,Seaborn 默认样式就很美观,无需复杂调整。文章介绍了6种常用图表。Seaborn 与 Pandas 完美配合,通过数据框直接调用列名,配合 PyCharm 的自动补全功能,让画图变得简单高效。sns.set_theme() 更可一键切换图表风格,大大提升了数据可视化的效率和美观度。
2025-08-08 11:19:56
997
原创 用 PyCharm 画图表的一天:我终于搞懂了 Matplotlib 的那些事儿
本文分享了学习Matplotlib的初体验。重点介绍了plot()画线图、barh()制作水平柱状图(含五平台比价案例)和pie()绘制饼图(班级球类偏好统计)三个核心功能。特别提到解决中文显示问题的技巧:通过plt.rcParams配置中文字体。作者强调动手实践的重要性,通过修改参数和实时查看图表效果,能快速掌握Matplotlib的基础用法。文章最后建议初学者多尝试调整图表样式,在实操中提升学习效果。
2025-08-07 14:50:59
897
原创 用 PyCharm 玩转正 Pandas:从数据小白到表格高手的一天
本文分享了使用PyCharm学习Pandas数据分析的实用技巧。从安装Pandas开始,介绍了使用清华源加速下载的方法。重点讲解了Series和DataFrame两种核心数据结构,以及loc定位、head/tail/info查看数据、处理缺失值等关键操作。作者通过在PyCharm中实操课堂练习,展示了如何计算成绩、平均值等实际应用,并分享了遇到问题的解决过程。文章强调PyCharm的代码提示和报错功能对新手学习帮助很大,使数据处理变得简单直观。最后鼓励读者尝试处理更大规模的数据,并交流学习经验。
2025-08-06 09:53:58
851
原创 PyCharm 在手,NumPy 函数实操笔记:从字符串到统计分析,一篇搞懂
这篇笔记记录了数据分析课上NumPy核心函数的实战心得。特别强调了axis参数的理解和PyCharm调试工具的重要性,最后通过课堂练习展示了这些函数的综合应用效果。笔记还分享了编码格式错误等常见坑点,对新手学习NumPy很有参考价值。
2025-08-05 16:20:57
613
原创 用 PyCharm 玩转 NumPy 数组 “手术”:从拼接、切割到元素增删的实操笔记
本文分享了NumPy数组操作的核心技巧,重点解析了数组拼接(vstack/hstack)、切割(split)和增删(append/delete)三大操作的要领。通过"写一行代码,看一次形状"的实践方法,作者实现了从"不敢下手"到"大胆操作"的转变。
2025-08-04 13:08:32
921
原创 PyCharm 实操:NumPy 数组的 “变形记”—— 从广播到维度翻转的实战笔记
这篇文章分享了作者学习NumPy数组操作的实践经验。通过PyCharm调试,作者深入理解了广播机制、数组变形(reshape/ravel/flatten)、维度转置(transpose/rollaxis)等核心概念,并总结了三个实用技巧
2025-08-01 14:06:27
526
实战:豆瓣电影 Top250 爬取秘籍 -XPath 和 URL 不动,轻松拿下 10 页数据的偷懒技巧
2025-07-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅