- 博客(5)
- 资源 (6)
- 收藏
- 关注
原创 SVM推导--硬间隔线性可分
SVM基本原理:最小距离最大化推导过程以二维空间为例最大间隔模型w^T*x+b=0表示方法二维空间中一条直线的表示方法:Ax+By+C=0将式中的x,y换成x1,x2,得到:Ax1+Bx2+C=0转换成矩阵乘法的形式:设向量w =,向量x =,b = C,则有二维空间中一条直线可表示为 (机器学习中的向量默认是列向量,要是想令w=(A,B),方程写成wx+b=0也可以)支持向量平面的表示(支持向量平面:超平面平移到两个类别的支持向量,得到的两条直线,图像里...
2021-03-25 18:54:45 506
原创 GooleNet网络pytorch实现
GoogleNet网络创建模型模型简介引入了Inception结构,融合不同尺度的特征信息使用1x1 的卷积核进行降维以及映射处理添加两个辅助分类器帮助训练 alexnet和VGG只有一个输出层,Googlenet有3个输出层,其中包含两个辅助分类层丢弃全连接层,使用平均池化层,大大减少模型参数Inception结构LeNet、AlexNet、VGG的网络卷积层和池化层都是串联,在inception结构中卷积层和池化层是并联将特征矩阵同时输入到4个层(1*...
2021-02-01 20:53:26 611
原创 VGG网络pytorch实现
VGG模型创建模型模型结构VGG模型共6种配置 表中 ‘conv3-256’ 表示256个大小为3*3的卷积核。 卷积层的stride = 1,padding = 1。最大池化下采样层中池化核大小2*2,stride = 2。表格从上向下顺序的一列是一个配置按顺序的各层。感受野VGG网络的亮点在于通过堆叠多个3*3的卷积核来替代大尺度卷积核,从而减少模型所需参数: 堆叠两个3*3卷积核来代替一个5*5卷积核,堆叠3个3*3卷积核来代替一个...
2021-01-31 23:05:03 1360
原创 AlexNet网络pytorch实现
AlexNet网络pytorch实现创建模型模型简介AlexNet网络结构: 卷积层1->池化层1maxpooling->卷积层2->池化层2maxpooling->卷积层3->卷积层4->卷积层5->maxpooling3->3个全连接层 在全连接层的前两层中使用dropout随机失活神经元操作,减少过拟合: 模型会出现过拟合往往是因为模型过于复杂,模型过于复杂往往是因为模型参...
2021-01-30 21:10:06 583
原创 LeNet网络pytorch实现(基于CIFAR10数据集)
LeNet网络anaconda+pycharm环境pytorch程序基于CIFAR10数据集CIFAR10中图像为大小32*32 的RGB图像from torch import nnimport torch.nn.functional as Fclass LeNet(nn.Module): def __init__(self): #在Python 3中,super(Square,self)调用等同于无参数的super()调用。 第一个参数指的是子类Square
2021-01-29 18:32:02 481
VMware14.0、Ubuntu16.04、KDE桌面安装教程
2018-06-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人