略读hashMap源码

本文详细解析了HashMap的内部工作机制,包括构造方法中的初始化参数、put操作的实现过程,get方法的查找逻辑以及remove方法的删除策略。文章通过源码分析,阐述了HashMap在负载因子、容量调整、冲突解决等方面的关键细节,有助于深入理解HashMap的内部运行机制。
摘要由CSDN通过智能技术生成

开始前的准备

	首先我们需要认识几个hashMap中经常使用的属性,知道他们的意思
1、loadFactor : 负载因子。默认是0.75f
2、threshold:阀值。默认是12
3、transient Node<K,V>[] table: 数组。hashMap中的数据就存储在这里
4、transient int size: hashMap具有的键值对个数。
5、static final int DEFAULT_INITIAL_CAPACITY = 1 << 4:默认的table初始大小16

一、创建hashMap

创建map的一般方式是
在Map<String,String> map = new HashMap<>();
这种方式未指定初始table的大小,对应的创建源码如下图

 public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

这里是说负载因子采用默认的负载因子其他参数也都采用默认的值。
还有一种创建方式是指定初始数组的大小,推荐使用这种方式
Map<String,String> map = new HashMap<>(16);

public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

大家可以发现这里这里调用了另一个构造方法,我们一起来看一下另一个方法:

public HashMap(int initialCapacity, float loadFactor) {
//不允许table初始大小小于0,小于则报错
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        //不允许table初始大小大于数组的极限,这个极限是2的30次方。1<<30
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //负载因子不能小于0,且要是float类型的数
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        //这里将这个map对象的负载因子设置为传递过来的默认的负载因子
        this.loadFactor = loadFactor;
        //获取一个比传入值刚好大的2的次方数
        this.threshold = tableSizeFor(initialCapacity);
    }

在上面的代码里有个很棒的方法->tableSizeFor()方法,这个方法使用位运算,十分迅速的计算出了比传入值刚好大一点或者相等的2的次方数。代码如下

/**
     * Returns a power of two size for the given target capacity.
     */
    static final int tableSizeFor(int cap) {
    //假设cap的二进制为 1111  0000  1111  0000
    //1111  0000  1110  1111
        int n = cap - 1;
        //1111  0000  1110  1111
        //0111  1000  0111  0111
        //1111  1000  1111  1111
        n |= n >>> 1;
        //1111  1000  1111  1111
        //0011  1110  0011  1111
        //1111  1110  1111  1111
        n |= n >>> 2;
        .....
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        //到最后经过最终的计算,只要数值不超过MAXIMUM_CAPACITY,都会变成从最大二进制位往右全部是1.
        //然后加一,就得出了刚好比cap大的2的n次方。假设cap是6那么得出的数就是8,
        //cap是17,得出的数就是32.
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

有细心的童鞋发现了,这个时候,map是没有创建数组的,这个时候只是创建了一个map对象,并给hashMap对象的初始配置参数进行了赋值,table还是空的。
因为我们指定的table值大小是16。经过计算,刚好比16大或者相等的2的次方数是16.所以,现在的参数被修改为了:
threshold = 16。

二、put操作

直接上代码:

 public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

好家伙,啥都看不出来,就看见return了个V出去。不慌,让我们点进去瞅瞅具体实现。接着放代码

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //首先是第一个if,将table的指针给tab。判断tab所代表的数组也就是table是不是空或者空数组。如果是,则执行resize()新建一个数组。resize:新建一个数组或者扩容一个数组。
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //将p指向tab上的某个下标。若没有hash碰撞,直接将节点放入对应数组下标。
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //发生碰撞
        else {
            Node<K,V> e; K k;
            //hash相同且key也相同,判断为修改。将p的值给变量e。
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //p是树节点,这里不关注红黑树如何操作取到的node。只需要知道我们拿到了e
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);		
             //既然发生了碰撞,且又不在树上和链表头部,那么只能便利链表去找key对应的值的路径给e。
            else {
                for (int binCount = 0; ; ++binCount) {
               //找到尾部没找到,新建一个node对象放在尾部。
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                  //放在尾部后发现链表长度为8,调用重构链表为树的方法treeifyBin
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //修改e的值。因为java是浅复制,所以修改e就是修改对应位置的数据,并将原来的e返回。
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                 //linkedHashMap的实现,hashMap暂不考虑这个方法
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //键值对个数大于阀值么?大于则扩容
        if (++size > threshold)
            resize();
        //linkedHashMap的实现,hashMap暂不考虑这个方法
        afterNodeInsertion(evict);
        return null;
    }

resize方法详解:

 final Node<K,V>[] resize() {
 	//创建临时属性接收table。
        Node<K,V>[] oldTab = table;
        //table的原来的容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //table原来的阀值
        int oldThr = threshold;
        //扩容后的容量和阀值
        int newCap, newThr = 0;
        //table原来的长度大于零?
        if (oldCap > 0) {
        	//oldCap 大于最大值就不扩容了,return出原来的
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //翻倍扩容。
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }//数组长度不大于0阀值大于0 也就是map新new的时候。直接把新数组的长度定义为阀值。因为此时阀值就是我们传进来的自定义的值,这样就实现了自定义map数组初始大小。
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //都为负时这里采用了默认值。
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //新阀值如果为0就重新计算,一般为新容量*负载因子
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //接下来就是创建数组,复制旧数组的数据至新数组。就不详细说明了。
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

三、get方法

final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //取出key对应的下标的数据
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //判断当前位置是不是要取的数据,是则返回。
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //判断当前节点有无下一个节点
            if ((e = first.next) != null) {
            	//判断是否是树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);			//遍历链表取数据
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        //未取到数据
        return null;
    }

四、remove方法

上代码:

final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        //判断要删除的节点存不存在。
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //判断hash对应的下标的数据是不是想要删除的数据
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
             //判断p有没有下一个元素,
            else if ((e = p.next) != null) {
    			//判断p是不是树
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                //遍历链表拿到要删除的值赋值给node,将node的上个值给p
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                //node是树节点时,使用树的删除方法
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);		//node就是下标位置的数据时,将node的下一节点的数据放在下标位置
                else if (node == p)
                    tab[index] = node.next;
                else
                	//node在链表中时,将node的子节点指针顶替掉自己在父节点上的记录。
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                //map数组中没有任何指针指向node
                //将node作为这个方法的返回值
                return node;
            }
        }
        return null;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值