基于投入导向的超效率CCR-DEA模型(MATLAB)

本文介绍如何使用CCR模型和超效率DEA模型进行效率评估,并提供了MATLAB实现代码。通过实例展示了如何处理投入和产出数据,计算得到每个决策单元的效率值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

采用 CCR模型与超效率 DEA模型,在测算结果上完全相同;但对于效率项而言,每一个效率项都获得了一个全新且数值大于 1 的解。

基于投入导向的超效率CCR模型为:

 借鉴参考文献[1],给出如下径向超效率代码。

clear
load('X');%投入指标数据,每一列代表每个决策单元的投入数据
load('Y');%产出指标数据。同上
x=X';y=Y';
n=size(x, 1);  %决策单元数
m=size(x',1);  %投入指标数
s=size(y',1);  %产出指标数
epsilon=10^-10;%一个非常小的正数,在目标函数中用以识别松弛变量,并判断有效和弱有效
f=[zeros(1,n) -epsilon*ones(1,m+s) 1];%目标函数前n个决策变量的价值系数为0,第n+1到第n+m+s个决策变量的价值系数都为那个充分小的正数,第n+m+s+1个决策系数的价值系数为1
A=zeros(1,n+m+s+1);%不等式约束的系数矩阵,仅有1行,n+m+s+1列,元素全为0
b=0;%不等式约束左端的值,全部为0
LB=zeros(n+m+s+1,1);%决策变量的下限,共n+m+s+1行,1列。每个元素都为0,
UB=[];%决策变量的上限,无要求。
LB(n+m+s+1)=-inf;
for i=1:n
    Aeq=[[x(:,1:i-1),zeros(m,1),x(:,i+1:n)] eye(m) zeros(m,s) -x(:,i)
        [y(:,1:i-1),zeros(s,1),y(:,i+1:n)] zeros(s,m) -eye(s) zeros(s,1)];
   beq=[zeros(m,1)
       y(:,i)]; 
   v(:,i)=linprog(f,A,b,Aeq,beq,LB,UB);
end
theta_se=v(n+m+s+1,:)';

结果

0.0523743040732201
0.460194278564892
0.280835016622215
0.236269678021675
0.137840670422364
0.689863036524380
0.623629111454303
0.171727320159312
1.92741811023484
0.855787172666927
0.351011949617917
0.377780736929536
1.04518535254579
1.36798979340467
0.515844523360096
0.885503385809792
0.972765683802164
0.507884347300140
0.720737829252715
0.868254837493949
0.678868902578528
1.24654749293846
0.651339743186006
0.566628186204255
0.909258990279544
1.17729908354233
1.03973367345551
1.07081404510341
0.437828731291854
0.637403183592677
1.07791085587961
0.834316741706237
1.34902353413582
1.33482443066868
0.482137577192168
0.139365597368248
0.158433430063874
0.0478733732092864

注:将投入指标数据保存在同个路径下,保存为X.mat文件,产出指标数据同样设置。

 

参考文献:[1]刘展,屈聪.MATLAB在超效率DEA模型中的应用[J].经济研究导刊,2014(03):86-87+93. 

参考来源超效率DEA

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值