位运算:^ (异或)
运算法则为:
a⊕b = (¬a ∧ b) ∨ (a ∧¬b)
- 归零律:a ⊕ a = 0
- 恒等律:a ⊕ 0 = a
- 交换律:a ⊕ b = b ⊕ a
- 结合律:a ⊕b ⊕ c = a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;
- 自反:a ⊕ b ⊕ a = b.
题目描述1
给定一个无序数组arr,找到数组中未出现的最小正整数
例如arr = [-1, 2, 3, 4]。返回1
arr = [1, 2, 3, 4]。返回5
class Solution {
public:
/**
* return the min number
* @param arr int整型vector the array
* @return int整型
*/
int minNumberdisappered(vector<int>& arr) {
// write code here
int num = 0;
for (auto a : arr) {
if (a > 0) num ^= a; // 0 ^ 1 ^ 1 ^ 2 ^ 2 = 0, 0 ^ 1 ^ 2 ^ 2 = 1
}
for (int i = 1; i <= arr.size(); ++i) {
num ^= i; // 如果某个数不存在, num将不为0
}
return num == 0? arr.size() + 1 : num;
}
};
题目描述2
将1至N的全排列存入数组,再将1至N的任意一个元素存入数组中,只有唯一的一个元素值重复,其他均只出现一次。每个数组元素只能访问一次,找出重复的那个元素。
#include<bits/stdc++.h>
using namespace std;
int main(){
nt a[]={1,2,3,4,2};
int n=sizeof(a)/sizeof(a[0]);
int x=0;
for(int i=0;i<n;i++){
x^=a[i];
}
for(int i=1;i<n;i++){
x^=i;
}
cout<<x<<endl;
}