Jzoj2183 树

227 篇文章 3 订阅
153 篇文章 0 订阅
给定一棵无环无向图表示的树,每个节点有一个指示灯和按钮,按下按钮会改变自身及相邻节点的灯状态。初始所有灯熄灭。目标是找出最少的按钮按下次数使所有灯点亮。题目可通过树形动态规划和高斯消元方法解决,但高斯消元不适用于大规模数据。常规做法是用两个01状态表示节点状态,并定义转移方程进行状态更新。
摘要由CSDN通过智能技术生成

 图论中的树为一个无环的无向图。给定一棵树,每个节点有一盏指示灯和一个按钮。如果节点的按扭被按了,那么该节点的灯会从熄灭变为点亮(当按之前是熄灭的),或者从点亮到熄灭(当按之前是点亮的)。并且该节点的直接邻居也发生同样的变化。
  开始的时候,所有的指示灯都是熄灭的。请编程计算最少要按多少次按钮,才能让所有节点的指示灯变为点亮状态。

高斯消元裸题

好吧如果出到100W就不能这么做了(虽然说这题才100)

正规的写树Dp

我们发现可以用两个01表示一个点的状态

f[x][0/1][0/1]表示x点有没有被点亮,x点有没有被按下的答案,那么显然f[x][0][1]是无用状态

可以发现如下转移

f[x][1][0]+f[v][1][1]->f[x][0][0]

f[x][0][0]+f[v][1][1]->f[x][1][0]

f[x][1][0]+f[v][1][0]->f[x][1][0]

f[x][0][0]+f[v][1][0]->f[x][0][0]

1+Σf[v][0][0]->f[x][1][1]


#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<vector> 
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n; vector<int> G[110];
int f[110][2][2];
void dfs(int x,int p){
	int a,b;
	f[x][1][1]=1; f[x][0][1]=0x3f3f3f;
	for(int v,i=0;i<G[x].size();++i)
		if(G[x][i]!=p){
			dfs(v=G[x][i],x); f[x][1][1]+=f[v][0][0];
			a=f[x][0][0]; b=f[x][0][1];
			f[x][0][0]=min(a+f[v][0][1],b+f[v][1][1]);
			f[x][0][1]=min(a+f[v][1][1],b+f[v][0][1]);
		}
}
int _18520(){
	scanf("%d",&n); if(!n) return 0;
	for(int i=1;i<=n;++i) G[i].clear();
	for(int x,y,i=1;i<n;++i){
		scanf("%d%d",&x,&y);
		G[x].push_back(y);
		G[y].push_back(x);
	} memset(f,0,sizeof f);
	dfs(1,0); 
	printf("%d\n",min(f[1][0][1],f[1][1][1]));
} int main(){ while(_18520()); }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值