LSQ+: Improving low-bit quantization through learnable offsets and better initialization

本文是对lsq:Learned Step-size Quantization的改进。

关于lsq,这篇文章讲得很清楚:
https://blog.csdn.net/nature553863/article/details/104275477
简单来说,就是通过学习来确定量化间隔。

在lsq提出时,当时流行的激活函数是ReLU。它的特点是,将小于0的激活值都置为0,因此lsq在量化激活值时使用非对称量化:即只量化正的激活值,负值直接量化为0。这在当时是没问题的,但后来swish、H-swish以及Leaky-ReLU这类负值区域的激活值不为0的激活函数被提出,如果再这样做,就会导致精度的下降(lsq+的作者通过实验证明了这一点)。

在这里插入图片描述
在这里插入图片描述
但是如果采取和量化权重一样的,对称量化激活值也会带来一个问题:量化的间隔是有限的,分出一半给负值就会减少正值的表示能力,而且负值区域相较正值来说要少很多,这样做并不值得。

为了解决这个问题,lsq+的作者给激活值加了一个可学习参数β:
在这里插入图片描述
在这里插入图片描述
由于权重是被对称量化的,所以激活值的计算过程如下:
在这里插入图片描述
可以看到,引入一个β,代价仅是一个常数时间的bias计算,但却能很好地提高准确率,是非常值得的。

本文的另一个创新是,修改了lsq的s值的初始化方法。

lsq对权重的s的初始化方法为:
在这里插入图片描述
lsq+则使用
在这里插入图片描述

效果很好:
在这里插入图片描述
至于激活值的s和β初始化,作者试了两种方法:
在这里插入图片描述
但这种方法用以受到异常值的影响。

以及:
在这里插入图片描述
所以最后作者采取的方法是先使用几个batch的数据对参数进行校正。

实验结果如下:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
可以看出,config3的效果大多比config4好,但也有例外。所以具体采取哪种方式,还是要看具体情况。

  • 0
    点赞
  • 5
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

JachinMa

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值