Part 1 分类
Chapter1 机器学习基础
https://blog.csdn.net/JachinMa/article/details/88703866
Chapter2 k-近邻算法
https://blog.csdn.net/JachinMa/article/details/88770841
Chapter3 决策树
https://blog.csdn.net/JachinMa/article/details/88809544
Chapter4 基于概率论的分类方法:朴素贝叶斯
https://blog.csdn.net/JachinMa/article/details/88832864

本书详细介绍了机器学习的基础知识,包括k-近邻算法、决策树、朴素贝叶斯、逻辑回归、支持向量机和AdaBoost等分类方法。同时,还涵盖了回归预测、K-均值聚类、Apriori和FP-growth关联分析,以及PCA和SVD数据简化等技术。此外,书中也讨论了大数据处理中的MapReduce工具。
最低0.47元/天 解锁文章
8731

被折叠的 条评论
为什么被折叠?



