自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 问答 (1)
  • 收藏
  • 关注

原创 冒泡排序,选择排序,C++

今天就要面试了,我才开始学这个,会不会太晚了#include <iostream>#include <string>using namespace std;int main(int argc, char *argv[]){ int arr[10] = {1,3,6,5,2,4,8,7,9,0}; int t = 0; // 冒泡排序法 // 10个数,遍历9次,每次遍历依次比较第i位和第(i+1)位,i从0到8,大的往后换 /

2022-05-31 10:59:49 157

原创 自学C++代码一览(更新中)

C++、信息安全技术、仿射码

2022-05-28 00:47:45 15498

原创 机器学习与模式识别实验_Anaconda3_Python

第四次实验:Iris 与集成学习目录第四次实验:Iris 与集成学习前言一、实验内容概述二、使用步骤1、检查python以及机器学习的版本是否达到要求,导入一些基础的包,并设置字体、创建图像保存的地址即函数;2、导入实验要求的iris数据集,按7:3 的比例随机划分为训练集和验证集,随机数生成器种子为学号后三位数(即211),并输出训练集和验证集前10行数据。3、在训练集上训练决策树模型,生成决策树边界;4、在训练集上训练Boosting(基学习器:决策树)和随机森林模型

2022-05-01 20:11:37 2722

原创 机器学习与模式识别实验_Anaconda3_Python

第三次实验:支持向量机在仿真数据集上的应用第三次实验:支持向量机在仿真数据集上的应用前言一、实验内容概述二、编程思路及步骤1、检查python以及机器学习的版本是否达到要求,导入一些基础的包,并设置字体、创建图像保存的地址。2、生成符合实验要求的make_blobs数据集,输出其散点图并保存。3、使用线性支持向量机对生成的数据进行分类4、查找支持向量。5、编写一个输出支持向量机边界线的函数,方便后续使用。6、将第3、4和5步的结果可视化,并保存。7、生成符合实验

2022-04-16 23:18:04 2275 3

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除