题目详情
标题:跳格子游戏 | 时间限制:1秒 | 内存限制:262144K | 语言限制:不限
地上共有N个格子,你需要跳完地上所有的格子,但是格子间是有强依赖关系的,跳完前一个格子后,后续的格子才会被开启,格子间的依赖关系由多组steps数组给出,steps[0]表示前一个格子,steps[1]表示steps[0]可以开启的格子:
比如[0,1]表示从跳完第0个格子以后第1个格子就开启了,比如[2,1],[2,3]表示跳完第2个格子后第1个格子和第3个格子就被开启了
请你计算是否能由给出的steps数组跳完所有的格子,如果可以输出yes,否则输出no
说明:
1.你可以从一个格子跳到任意一个开启的格子
2.没有前置依赖条件的格子默认就是开启的
3.如果总数是N,则所有的格子编号为[0,1,2,3…N-1]连续的数组
输入描述:
输入一个整数N表示总共有多少个格子,接着输入多组二维数组steps表示所有格子之间的依赖关系
输出描述:
如果能按照steps给定的依赖顺序跳完所有的格子输出yes
否则输出no
示例1
输入
3
0 1
0 2
输出
yes
说明
总共有三个格子[0,1,2],跳完0个格子后第1个格子就开启了,跳到第0个格子后第2个格子也被开启了,按照0->1->2或者0->2->1的顺序都可以跳完所有的格子
示例2
输入
2
1 0
0 1
输出
no
说明
总共有2个格子,第1个格子可以开启第0格子,但是第1个格子又需要第0个格子才能开启,相互依赖,因此无法完成
示例3
输入
6
0 1
0 2
0 3
0 4
0 5
输出
yes
说明
总共有6个格子,第0个格子可以开启第1,2,3,4,5个格子,所以跳完第0个格子之后其他格子都被开启了,之后按任何顺序可以跳完剩余的格子
示例4
输入
5
4 3
0 4
2 1
3 2
输出
yes
说明
跳完第0个格子可以开启格子4,跳完格子4可以开启格子3,跳完格子3可以开启格子2,跳完格子2可以开启格子1,按照0->4->3->2->1这样就跳完所有的格子
示例5
输入
4
1 2
1 0
输出
yes
说明
总共4个格子[0,1,2,3],格子1和格子3没有前置条件所以默认开启,格子1可以开启格子0和格子2,所以跳到格子1之后就可以开启所有的格子,因此可以跳完所有格子
解题思路
很明显这是一道拓扑排序题目,不同的节点之间存在先后执行依赖关系,只有前一个节点完成后一个节点才能完成。比如以下面例子
6
1 2
1 3
1 4
0 2
0 3
3 1为例子,有拓扑图如下所示:
edges是一个长度N为的List集合,以steps格子的右边数据(即开启的格子)为索引,以依赖关系的左边数据作为list的相邻顶点集合。节点5是一个单独节点。
可以使用深度搜索或者广度搜索来遍历图中的每个节点以及其相邻节点,如果判断图中存在环,那么一定有两个格子相互依赖,也就无法跳完所有的格子。以深度搜索dfs为例说明,如何判别图中是否存在环呢?针对某个节点来说,遍历其有三种可能:
这个节点还未被遍历过,这种情况会将这个节点加入dfs里面递归遍历,直到某节点再无相邻节点就结束。图中0节点还没被遍历过,将节点0加入到dfs方法里面一直遍历到节点4,节点4再无相邻节点,符合条件。
这个节点已经被遍历过了,但是在遍历其相邻节点时又遍历了一次这个节点。比如节点0进入dfs深度遍历,先是遍历0的相邻节点3,再遍历相邻节点1,接下来再次遍历节点1的相邻节点时是节点3而不是节点4,此时发现节点3已经被遍历过了,那么图中一定存在环,跳格子失败。
- 这个节点被遍历过了而且相邻节点也被深度遍历过了,说明图中无环(单独一个节点必然没有环),可以跳完所有的格子。
想要对一个节点标记3中遍历状态,那么使用boolean数组是欠妥的,可以使用int数组,用整数0,1, 2表示一个节点的不同的遍历状态。
Java代码
public class Main {
private static final int NOT_VISITED =