Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
我也是网上参考的教程。
强烈建议学习深入Java集合学习系列:HashMap的实现原理和深入Java集合学习系列:LinkedHashMap的实现原理。
代码如下:
import java.util.HashMap;
import java.util.LinkedHashMap;
/*
* http://blog.csdn.net/HE19930303/article/details/51315263
*
* http://zhangshixi.iteye.com/blog/673789
*
* http://zhangshixi.iteye.com/blog/672697
*
* 这个题值得学习Java中的HashMap和LinkedHashMap
* */
public class LRUCache extends LinkedHashMap<Integer,Integer>
{
private int maxcapacity;
public LRUCache(int capacity)
{
super(capacity,0.75f,true);
this.maxcapacity=capacity;
}
public int get(int key)
{
Integer vaule=super.get(key);
if(vaule==null)return -1;
else return vaule;
}
public void set(int key, int value)
{
super.put(key,value);
}
protected boolean removeEldestEntry(Map.Entry<Integer,Integer> eldest)
{
return size()>maxcapacity;
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/