leetcode 396. Rotate Function 旋转向量的计算 + 寻找规律

Given an array of integers A and let n to be its length.

Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a “rotation function” F on A as follow:

F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1].

Calculate the maximum value of F(0), F(1), …, F(n-1).

Note:
n is guaranteed to be less than 105.

Example:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

题意很简单,就是做一次两层遍历即可,我认为这是最直接最简单的方法,但是直接双层循环会超时,为了找规律,先把具体的数字抽象为A,B,C,D,那么我们可以得到:

F(0) = 0A + 1B + 2C +3D

F(1) = 0D + 1A + 2B +3C

F(2) = 0C + 1D + 2A +3B

F(3) = 0B + 1C + 2D +3A

那么,我们通过仔细观察,我们可以得出下面的规律:

F(1) = F(0) + sum - 4D

F(2) = F(1) + sum - 4C

F(3) = F(2) + sum - 4B

那么我们就找到规律了, F(i) = F(i-1) + sum - n*A[n-i],可以写出代码如下:

代码如下:

#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <stack>
#include <string>
#include <climits>
#include <algorithm>
#include <sstream>
#include <functional>
#include <bitset>
#include <numeric>
#include <cmath>
#include <regex>

using namespace std;



class Solution 
{
public:
    int maxRotateFunction(vector<int>& a) 
    {
        int t = 0, sum = 0, n = a.size();
        for (int i = 0; i < n; ++i) 
        {
            sum += a[i];
            t += i * a[i];
        }

        int res = t;
        for (int i = 1; i < n; ++i) 
        {
            t = t + sum - n * a[n - i];
            res = max(res, t);
        }
        return res;
    }


    int maxRotateFunctionByLoop(vector<int>& a)
    {
        if (a.size() <= 0)
            return 0;

        int maxRes = numeric_limits<int>::min();
        for (int offset = 0; offset < a.size(); offset++)
        {
            int sum = 0;
            for (int i = 0; i < a.size(); i++)
            {
                int index = (i + offset) % a.size();
                sum += i * a[index];
            }
            maxRes = max(maxRes, sum);
        }
        return maxRes;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值