使用Python实现正态分布检验方法-D’Agostino’s K-squared Test
正态分布是统计学中最常用的分布之一,对于许多数据集来说,它们的分布往往可以被假定为正态分布。因此,在做统计分析时,我们需要对数据是否符合正态分布进行检验。其中一种主要的检验方法是D’Agostino’s K-squared Test。
D’Agostino’s K-squared Test是一种基于第二、第三个矩的偏态和峰态检验方法,具有较高的准确性。下面就用Python实现这个方法:
import numpy as np
from scipy.stats import skew, kurtosis
def dagostino_k_squared(data)