使用Python实现正态分布检验方法-D‘Agostino‘s K-squared Test

465 篇文章 ¥39.90 ¥99.00
本文介绍了如何使用Python实现正态分布检验的D'Agostino's K-squared Test。该方法基于数据的偏度和峰度,通过计算K-squared统计量和P值来判断数据是否符合正态分布。当P值小于0.05的显著性水平时,数据被视为不符合正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Python实现正态分布检验方法-D’Agostino’s K-squared Test

正态分布是统计学中最常用的分布之一,对于许多数据集来说,它们的分布往往可以被假定为正态分布。因此,在做统计分析时,我们需要对数据是否符合正态分布进行检验。其中一种主要的检验方法是D’Agostino’s K-squared Test。

D’Agostino’s K-squared Test是一种基于第二、第三个矩的偏态和峰态检验方法,具有较高的准确性。下面就用Python实现这个方法:

import numpy as np
from scipy.stats import skew, kurtosis

def dagostino_k_squared(data)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值